scholarly journals A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti

2016 ◽  
Vol 34 (11) ◽  
pp. 1198-1205 ◽  
Author(s):  
Harald Marx ◽  
Catherine E Minogue ◽  
Dhileepkumar Jayaraman ◽  
Alicia L Richards ◽  
Nicholas W Kwiecien ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Nadia Kallala ◽  
Wissal M’sehli ◽  
Karima Jelali ◽  
Zribi Kais ◽  
Haythem Mhadhbi

The aim of this study was to assess the effect of symbiotic bacteria inoculation on the response ofMedicago truncatulagenotypes to iron deficiency. The present work was conducted on threeMedicago truncatulagenotypes: A17, TN8.20, and TN1.11. Three treatments were performed: control (C), direct Fe deficiency (DD), and induced Fe deficiency by bicarbonate (ID). Plants were nitrogen-fertilized (T) or inoculated with two bacterial strains:Sinorhizobium melilotiTII7 andSinorhizobium medicaeSII4. Biometric, physiological, and biochemical parameters were analyzed. Iron deficiency had a significant lowering effect on plant biomass and chlorophyll content in allMedicago truncatulagenotypes. TN1.11 showed the highest lipid peroxidation and leakage of electrolyte under iron deficiency conditions, which suggest that TN1.11 was more affected than A17 and TN8.20 by Fe starvation. Iron deficiency affected symbiotic performance indices of allMedicago truncatulagenotypes inoculated with bothSinorhizobiumstrains, mainly nodules number and biomass as well as nitrogen-fixing capacity. Nevertheless, inoculation withSinorhizobiumstrains mitigates the negative effect of Fe deficiency on plant growth and oxidative stress compared to nitrogen-fertilized plants. The highest auxin producing strain, TII7, preserves relatively high growth and root biomass and length when inoculated to TN8.20 and A17. On the other hand, both TII7 and SII4 strains improve the performance of sensitive genotype TN1.11 through reduction of the negative effect of iron deficiency on chlorophyll and plant Fe content. The bacterial inoculation improved Fe-deficient plant response to oxidative stress via the induction of the activities of antioxidant enzymes.


2015 ◽  
Vol 28 (8) ◽  
pp. 856-868 ◽  
Author(s):  
Claus Lang ◽  
Sharon R. Long

The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.


2018 ◽  
Vol 31 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Qi Wang ◽  
Jinge Liu ◽  
Hua Li ◽  
Shengming Yang ◽  
Peter Körmöczi ◽  
...  

Medicago truncatula shows a high level of specificity when interacting with its symbiotic partner Sinorhizobium meliloti. This specificity is mainly manifested at the nitrogen-fixing stage of nodule development, such that a particular bacterial strain forms nitrogen-fixing nodules (Nod+/Fix+) on one plant genotype but ineffective nodules (Nod+/Fix−) on another. Recent studies have just begun to reveal the underlying molecular mechanisms that control this specificity. The S. meliloti strain A145 induces the formation of Fix+ nodules on the accession DZA315.16 but Fix− nodules on Jemalong A17. A previous study reported that the formation of Fix− nodules on Jemalong A17 by S. meliloti A145 was conditioned by a single recessive allele named Mtsym6. Here we demonstrate that the specificity associated with S. meliloti A145 is controlled by multiple genes in M. truncatula, including NFS1 and NFS2 that encode nodule-specific cysteine-rich (NCR) peptides. The two NCR peptides acted dominantly to block rather than promote nitrogen fixation by S. meliloti A145. These two NCR peptides are the same ones that negatively regulate nitrogen-fixing symbiosis associated with S. meliloti Rm41.


2019 ◽  
pp. 1006-1014
Author(s):  
Gyöngyi Zs. Kontra‐Kováts ◽  
Lili Fodor ◽  
Beatrix Horváth ◽  
Ágota Domonkos ◽  
Gergely Iski ◽  
...  

2008 ◽  
Vol 21 (6) ◽  
pp. 781-790 ◽  
Author(s):  
Alberto Ferrarini ◽  
Matteo De Stefano ◽  
Emmanuel Baudouin ◽  
Chiara Pucciariello ◽  
Annalisa Polverari ◽  
...  

Nitric oxide (NO) is involved in diverse physiological processes in plants, including growth, development, response to pathogens, and interactions with beneficial microorganisms. In this work, a dedicated microarray representing the widest database available of NO-related transcripts in plants has been produced with 999 genes identified by a cDNA amplified fragment length polymorphism analysis as modulated in Medicago truncatula roots treated with two NO donors. The microarray then was used to monitor the expression of NO-responsive genes in M. truncatula during the incompatible interaction with the foliar pathogen Colletotrichum trifolii race 1 and during the symbiotic interaction with Sinorhizobium meliloti 1021. A wide modulation of NO-related genes has been detected during the hypersensitive reaction or during nodule formation and is discussed with special emphasis on the physiological relevance of these genes in the context of the two biotic interactions. This work clearly shows that NO-responsive genes behave differently depending on the plant organ and on the type of interaction, strengthening the need to consider regulatory networks, including different signaling molecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noriyoshi Isozumi ◽  
Yuya Masubuchi ◽  
Tomohiro Imamura ◽  
Masashi Mori ◽  
Hironori Koga ◽  
...  

AbstractA model legume, Medicago truncatula, has over 600 nodule-specific cysteine-rich (NCR) peptides required for symbiosis with rhizobia. Among them, NCR169, an essential factor for establishing symbiosis, has four cysteine residues that are indispensable for its function. However, knowledge of NCR169 structure and mechanism of action is still lacking. In this study, we solved two NMR structures of NCR169 caused by different disulfide linkage patterns. We show that both structures have a consensus C-terminal β-sheet attached to an extended N-terminal region with dissimilar features; one moves widely, whereas the other is relatively stapled. We further revealed that the disulfide bonds of NCR169 contribute to its structural stability and solubility. Regarding the function, one of the NCR169 oxidized forms could bind to negatively charged bacterial phospholipids. Furthermore, the positively charged lysine-rich region of NCR169 may be responsible for its antimicrobial activity against Escherichia coli and Sinorhizobium meliloti. This active region was disordered even in the phospholipid bound state, suggesting that the disordered conformation of this region is key to its function. Morphological observations suggested the mechanism of action of NCR169 on bacteria. The present study on NCR169 provides new insights into the structure and function of NCR peptides.


Sign in / Sign up

Export Citation Format

Share Document