scholarly journals Expression of Medicago truncatula Genes Responsive to Nitric Oxide in Pathogenic and Symbiotic Conditions

2008 ◽  
Vol 21 (6) ◽  
pp. 781-790 ◽  
Author(s):  
Alberto Ferrarini ◽  
Matteo De Stefano ◽  
Emmanuel Baudouin ◽  
Chiara Pucciariello ◽  
Annalisa Polverari ◽  
...  

Nitric oxide (NO) is involved in diverse physiological processes in plants, including growth, development, response to pathogens, and interactions with beneficial microorganisms. In this work, a dedicated microarray representing the widest database available of NO-related transcripts in plants has been produced with 999 genes identified by a cDNA amplified fragment length polymorphism analysis as modulated in Medicago truncatula roots treated with two NO donors. The microarray then was used to monitor the expression of NO-responsive genes in M. truncatula during the incompatible interaction with the foliar pathogen Colletotrichum trifolii race 1 and during the symbiotic interaction with Sinorhizobium meliloti 1021. A wide modulation of NO-related genes has been detected during the hypersensitive reaction or during nodule formation and is discussed with special emphasis on the physiological relevance of these genes in the context of the two biotic interactions. This work clearly shows that NO-responsive genes behave differently depending on the plant organ and on the type of interaction, strengthening the need to consider regulatory networks, including different signaling molecules.

2012 ◽  
Vol 161 (1) ◽  
pp. 425-439 ◽  
Author(s):  
Alexandre Boscari ◽  
Jennifer del Giudice ◽  
Alberto Ferrarini ◽  
Luca Venturini ◽  
Anne-Lise Zaffini ◽  
...  

2009 ◽  
Vol 22 (12) ◽  
pp. 1577-1587 ◽  
Author(s):  
Youry Pii ◽  
Alessandra Astegno ◽  
Elisa Peroni ◽  
Massimo Zaccardelli ◽  
Tiziana Pandolfini ◽  
...  

The Medicago truncatula N5 gene is induced in roots after Sinorhizobium meliloti infection and it codes for a putative lipid transfer protein (LTP), a family of plant small proteins capable of binding and transferring lipids between membranes in vitro. Various biological roles for plant LTP in vivo have been proposed, including defense against pathogens and modulation of plant development. The aim of this study was to shed light on the role of MtN5 in the symbiotic interaction between M. truncatula and S. meliloti. MtN5 cDNA was cloned and the mature MtN5 protein expressed in Escherichia coli. The lipid binding capacity and antimicrobial activity of the recombinant MtN5 protein were tested in vitro. MtN5 showed the capacity to bind lysophospholipids and to inhibit M. truncatula pathogens and symbiont growth in vitro. Furthermore, MtN5 was upregulated in roots after infection with either the fungal pathogen Fusarium semitectum or the symbiont S. meliloti. Upon S. meliloti infection, MtN5 was induced starting from 1 day after inoculation (dpi). It reached the highest concentration at 3 dpi and it was localized in the mature nodules. MtN5-silenced roots were impaired in nodulation, showing a 50% of reduction in the number of nodules compared with control roots. On the other hand, transgenic roots overexpressing MtN5 developed threefold more nodules with respect to control roots. Here, we demonstrate that MtN5 possesses biochemical features typical of LTP and that it is required for the successful symbiotic association between M. truncatula and S. meliloti.


2015 ◽  
Vol 28 (12) ◽  
pp. 1353-1363 ◽  
Author(s):  
Pauline Blanquet ◽  
Liliana Silva ◽  
Olivier Catrice ◽  
Claude Bruand ◽  
Helena Carvalho ◽  
...  

Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.


2007 ◽  
Vol 20 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Laurence Godiard ◽  
Andreas Niebel ◽  
Fabienne Micheli ◽  
Jérôme Gouzy ◽  
Thomas Ott ◽  
...  

We set up a large-scale suppression subtractive hybridization (SSH) approach to identify Medicago truncatula genes differentially expressed at different stages of the symbiotic interaction with Sinorhizobium meliloti, with a particular interest for regulatory genes. We constructed 7 SSH libraries covering successive stages from Nod factor signal transduction to S. meliloti infection, nodule organogenesis, and functioning. Over 26,000 clones were differentially screened by two rounds of macroarray hybridizations. In all, 3,340 clones, corresponding to genes whose expression was potentially affected, were selected, sequenced, and ordered into 2,107 tentative gene clusters, including 767 MtS clusters corresponding to new M. truncatula genes. In total, 52 genes encoding potential regulatory proteins, including transcription factors (TFs) and other elements of signal transduction cascades, were identified. The expression pattern of some of them was analyzed by quantitative reverse-transcription polymerase chain reaction in wild-type and in Nod¯ M. truncatula mutants blocked before or after S. meliloti infection. Three genes, coding for TFs of the bHLH and WRKY families and a C2H2 zinc-finger protein, respectively, were found to be upregulated, following S. meliloti inoculation, in the infection-defective mutant lin, whereas the bHLH gene also was expressed in the root-hair-curling mutant hcl. The potential role of these genes in early symbiotic steps is discussed.


2008 ◽  
Vol 21 (4) ◽  
pp. 404-410 ◽  
Author(s):  
Laurent Coque ◽  
Purnima Neogi ◽  
Catalina Pislariu ◽  
Kimberly A. Wilson ◽  
Christina Catalano ◽  
...  

In Medicago truncatula nodules, the soil bacterium Sinorhizobium meliloti reduces atmospheric dinitrogen into nitrogenous compounds that the legume uses for its own growth. In nitrogen-fixing nodules, each infected cell contains symbiosomes, which include the rhizobial cell, the symbiosome membrane surrounding it, and the matrix between the bacterium and the symbiosome membrane, termed the symbiosome space. Here, we describe the localization of ENOD8, a nodule-specific esterase. The onset of ENOD8 expression occurs at 4 to 5 days postinoculation, before the genes that support the nitrogen fixation capabilities of the nodule. Expression of an ENOD8 promoter–gusA fusion in nodulated hairy roots of composite transformed M. truncatula plants indicated that ENOD8 is expressed from the proximal end of interzone II to III to the proximal end of the nodules. Confocal immunomicroscopy using an ENOD8-specific antibody showed that the ENOD8 protein was detected in the same zones. ENOD8 protein was localized in the symbiosome membrane or symbiosome space around the bacteroids in the infected nodule cells. Immunoblot analysis of fractionated symbiosomes strongly suggested that ENOD8 protein was found in the symbiosome membrane and symbiosome space, but not in the bacteroid. Determining the localization of ENOD8 protein in the symbiosome is a first step in understanding its role in symbiosome membrane and space during nodule formation and function.


2017 ◽  
Vol 30 (5) ◽  
pp. 399-409 ◽  
Author(s):  
Théophile Kazmierczak ◽  
Marianna Nagymihály ◽  
Florian Lamouche ◽  
Quentin Barrière ◽  
Ibtissem Guefrachi ◽  
...  

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Sign in / Sign up

Export Citation Format

Share Document