scholarly journals In vivo imaging of clock gene expression in multiple tissues of freely moving mice

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Toshiyuki Hamada ◽  
Kenneth Sutherland ◽  
Masayori Ishikawa ◽  
Naoki Miyamoto ◽  
Sato Honma ◽  
...  
2006 ◽  
Vol 20 (8) ◽  
pp. 1715-1727 ◽  
Author(s):  
Laurence Canaple ◽  
Juliette Rambaud ◽  
Ouria Dkhissi-Benyahya ◽  
Béatrice Rayet ◽  
Nguan Soon Tan ◽  
...  

Abstract Recent evidence has emerged that peroxisome proliferator-activated receptor α (PPARα), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARα influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARα plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARα on a potential PPARα response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARα gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARα in peripheral clocks.


2010 ◽  
Vol 38 (3) ◽  
pp. 751-758 ◽  
Author(s):  
Beatrice Haimovich ◽  
Jacqueline Calvano ◽  
Adrian D. Haimovich ◽  
Steve E. Calvano ◽  
Susette M. Coyle ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Tenna Bering ◽  
Henrik Hertz ◽  
Martin Fredensborg Rath

The central circadian clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, but an SCN-dependent molecular circadian oscillator is present in the cerebellar cortex. Recent findings suggest that circadian release of corticosterone is capable of driving the circadian oscillator of the rat cerebellum. To determine if additional neuroendocrine signals act to shape cerebellar clock gene expression, we here tested the role of the thyroid hormone triiodothyronine (T3) in regulation of the cerebellar circadian oscillator. In cultured cerebellar granule cells from mixed-gender neonatal rats, T3 treatment affected transcript levels of the clock genes Per2, Arntl, Nr1d1, and Dbp, suggesting that T3 acts directly on granule cells to control the circadian oscillator. We then used two different in vivo protocols to test the role of T3 in adult female rats: Firstly, a single injection of T3 did not influence clock gene expression in the cerebellum. Secondly, we established a surgical rat model combining SCN lesion with a programmable micropump infusing circadian physiological levels of T3; however, rhythmic infusion of T3 did not reestablish differential clock gene expression between day and night in SCN lesioned rats. To test if the effects of T3 observed in vitro were related to the developmental stage, acute injections of T3 were performed in mixed-gender neonatal rats in vivo; this procedure significantly affected cerebellar expression of the clock genes Per1, Per2, Nr1d1, and Dbp. Developmental comparisons showed rhythmic expression of all clock genes analyzed in the cerebellum of adult rats only, whereas T3 responsiveness was limited to neonatal animals. Thus, T3 shapes cerebellar clock gene profiles in early postnatal stages, but it does not represent a systemic circadian regulatory mechanism linking the SCN to the cerebellum throughout life.


2018 ◽  
Vol 115 (16) ◽  
pp. 4276-4281 ◽  
Author(s):  
Long Mei ◽  
Yanyan Fan ◽  
Xiaohua Lv ◽  
David K. Welsh ◽  
Cheng Zhan ◽  
...  

Endogenous circadian clocks control 24-h physiological and behavioral rhythms in mammals. Here, we report a real-time in vivo fluorescence recording system that enables long-term monitoring of circadian rhythms in the brains of freely moving mice. With a designed reporter of circadian clock gene expression, we tracked robust Cry1 transcription reporter rhythms in the suprachiasmatic nucleus (SCN) of WT, Cry1−/−, and Cry2−/− mice in LD (12 h light, 12 h dark) and DD (constant darkness) conditions and verified that signals remained stable for over 6 mo. Further, we recorded Cry1 transcriptional rhythms in the subparaventricular zone (SPZ) and hippocampal CA1/2 regions of WT mice housed under LD and DD conditions. By using a Cre-loxP system, we recorded Per2 and Cry1 transcription rhythms specifically in vasoactive intestinal peptide (VIP) neurons of the SCN. Finally, we demonstrated the dynamics of Per2 and Cry1 transcriptional rhythms in SCN VIP neurons following an 8-h phase advance in the light/dark cycle.


Sign in / Sign up

Export Citation Format

Share Document