scholarly journals Integrin α7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao-Yan Ming ◽  
Li Fu ◽  
Li-Yi Zhang ◽  
Yan-Ru Qin ◽  
Ting-Ting Cao ◽  
...  
Oral Oncology ◽  
2017 ◽  
Vol 67 ◽  
pp. 109-118 ◽  
Author(s):  
Lorenz Kadletz ◽  
Dietmar Thurnher ◽  
Robert Wiebringhaus ◽  
Boban M. Erovic ◽  
Ulana Kotowski ◽  
...  

2012 ◽  
Vol 32 (2) ◽  
pp. 81-89
Author(s):  
Tomohide ISOBE ◽  
Gou YAMAMOTO ◽  
Tarou IRIE ◽  
Tetuhiko TACHIKAWA ◽  
Kenji MISHIMA

2020 ◽  
Vol 319 (1) ◽  
pp. C93-C104
Author(s):  
Nuo Li ◽  
Yang Yu ◽  
Baoming Wang

Esophageal squamous cell carcinoma (ESCC) ranks among the five most common cancers in China and has a five-year survival rate of less than 15%. The transcription factor ATPase-family AAA-domain-containing protein 2 (ATAD2) has potential as a therapeutic target in various tumors, and microarray-based gene expression profiling reveals dysregulation of ATAD2 specifically in ESCC. Here we investigated whether ATAD2 could mediate a regulation of cancer stem cell (CSC) biological functions in ESCC. Immunohistochemical staining, reverse transcription quantitative polymerase chain reaction, and Western blot assays all revealed upregulation of ATAD2 in ESCC tissues and cell lines, which furthermore correlated with progression of ESCC. In loss-of-function experiments, silencing of ATAD2 inhibited activation of the Hedgehog signaling pathway, as indicated by reduced expression of glioma-associated oncogene family zinc finger 1 (Gli1), smoothened frizzled class receptor (SMO), and patched 1 (PTCH1). Investigations with 5-ethynyl-2′-deoxyuridine (EdU), Transwell assay, scratch test, flow cytometry, and colony formation assay showed that silencing of ATAD2 or inhibiting the Hedgehog signaling decreased the proliferation, invasion, and migration abilities along with colony formation, but elevated the apoptosis rate of CSCs. Furthermore, in vivo experiments validated the suppressive effect of siRNA-mediated ATAD2 silencing on tumor growth in nude mice. Thus, downregulation of ATAD2 can seemingly restrain the malignant phenotypes of ESCC cells through inhibition of the Hedgehog signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document