Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass

2006 ◽  
Vol 38 (5) ◽  
pp. 589-593 ◽  
Author(s):  
Naoko Hashimoto ◽  
Yoshiaki Kido ◽  
Tohru Uchida ◽  
Shun-ichiro Asahara ◽  
Yutaka Shigeyama ◽  
...  
2010 ◽  
Vol 299 (1) ◽  
pp. C1-C6 ◽  
Author(s):  
Yoshio Fujitani ◽  
Takashi Ueno ◽  
Hirotaka Watada

Autophagy is an evolutionarily conserved machinery for degradation and recycling of various cytoplasmic components such as long-lived proteins and organelles. In pancreatic β-cells, as in most other cells, autophagy is also important for the low basal turnover of ubiquitinated proteins and damaged organelles under normal conditions. Insulin resistance results in upregulation of autophagic activity in β-cells. Induced autophagy in β-cells plays a pivotal role in the adaptive expansion of β-cell mass. Nevertheless, it is not clear whether autophagy is protective or detrimental in response to cellular stresses in β-cells. In this review, we describe the crucial roles of autophagy in normal function of β-cells and discuss how dysfunction of the autophagic machinery could lead to the development of diabetes mellitus.


2010 ◽  
Vol 120 (5) ◽  
pp. 179-181 ◽  
Author(s):  
Henrik Ortsäter

Saturated fatty acids are toxic to pancreatic β-cells. By inducing apoptosis, they contribute to a decrease in β-cell mass, a hallmark of Type 2 diabetes. In the present issue of Clinical Science, Keane and co-workers show that the polyunsaturated fatty acid arachidonic acid protects the β-cell against the toxic effects of palmitate. As Type 2 diabetes is characterized by subclinical inflammation, and arachidonic acid and metabolites thereof are produced during states of inflammation, it is possible that pancreatic β-cells use arachidonic acid as a compound for self-protection.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Kazuki Orime ◽  
Jun Shirakawa ◽  
Yu Togashi ◽  
Kazuki Tajima ◽  
Hideaki Inoue ◽  
...  

Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 218
Author(s):  
Norikiyo Honzawa ◽  
Kei Fujimoto

Type 2 diabetes is caused by impaired insulin secretion and/or insulin resistance. Loss of pancreatic β-cell mass detected in human diabetic patients has been considered to be a major cause of impaired insulin secretion. Additionally, apoptosis is found in pancreatic β-cells; β-cell mass loss is induced when cell death exceeds proliferation. Recently, however, β-cell dedifferentiation to pancreatic endocrine progenitor cells and β-cell transdifferentiation to α-cell was reported in human islets, which led to a new underlying molecular mechanism. Hyperglycemia inhibits nuclear translocation and expression of forkhead box-O1 (FoxO1) and induces the expression of neurogenin-3(Ngn3), which is required for the development and maintenance of pancreatic endocrine progenitor cells. This new hypothesis (Foxology) is attracting attention because it explains molecular mechanism(s) underlying β-cell plasticity. The lineage tracing technique revealed that the contribution of dedifferentiation is higher than that of β-cell apoptosis retaining to β-cell mass loss. In addition, islet cells transdifferentiate each other, such as transdifferentiation of pancreatic β-cell to α-cell and vice versa. Islet cells can exhibit plasticity, and they may have the ability to redifferentiate into any cell type. This review describes recent findings in the dedifferentiation and transdifferentiation of β-cells. We outline novel treatment(s) for diabetes targeting islet cell plasticity.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


Diabetes ◽  
2018 ◽  
Vol 67 (12) ◽  
pp. 2626-2639 ◽  
Author(s):  
Eunjin Oh ◽  
Miwon Ahn ◽  
Solomon Afelik ◽  
Thomas C. Becker ◽  
Bart O. Roep ◽  
...  

2013 ◽  
Vol 304 (12) ◽  
pp. E1263-E1272 ◽  
Author(s):  
Weijuan Shao ◽  
Zhaoxia Wang ◽  
Wilfred Ip ◽  
Yu-Ting Chiang ◽  
Xiaoquan Xiong ◽  
...  

Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28–36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28–36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation. An in vitro investigation revealed that GLP-1(28–36)amide stimulates β-catenin (β-cat) Ser675 phosphorylation in both the clonal INS-1 cell line and rat primary pancreatic islet cells. In INS-1 cells, the stimulation was accompanied by increased nuclear β-cat content. GLP-1(28–36)amide was also shown to increase cellular cAMP levels, PKA enzymatic activity, and cAMP response element-binding protein (CREB) and cyclic AMP-dependent transcription factor-1 (ATF-1) phosphorylation. Furthermore, GLP-1(28–36)amide treatment enhanced islet insulin secretion and increased the growth of INS-1 cells, which was associated with increased cyclin D1 expression. Finally, PKA inhibition attenuated the effect of GLP-1(28–36)amide on β-cat Ser675 phosphorylation and cyclin D1 expression in the INS-1 cell line. We have thus revealed the beneficial effect of GLP-1(28–36)amide in pancreatic β-cells in vitro and in vivo. Our observations suggest that GLP-1(28–36)amide may exert its effect through the PKA/β-catenin signaling pathway.


2017 ◽  
Vol 313 (3) ◽  
pp. E367-E380 ◽  
Author(s):  
Kazuki Tajima ◽  
Jun Shirakawa ◽  
Tomoko Okuyama ◽  
Mayu Kyohara ◽  
Shunsuke Yamazaki ◽  
...  

Metformin has been widely used for the treatment of type 2 diabetes. However, the effect of metformin on pancreatic β-cells remains controversial. In this study, we investigated the impacts of treatment with metformin on pancreatic β-cells in a mouse model fed a high-fat diet (HFD), which triggers adaptive β-cell replication. An 8-wk treatment with metformin improved insulin resistance and suppressed the compensatory β-cell hyperplasia induced by HFD-feeding. In contrast, the increment in β-cell mass arising from 60 wk of HFD feeding was similar in mice treated with and those treated without metformin. Interestingly, metformin suppressed β-cell proliferation induced by 1 wk of HFD feeding without any changes in insulin resistance. Metformin directly suppressed glucose-induced β-cell proliferation in islets and INS-1 cells in accordance with a reduction in mammalian target of rapamycin phosphorylation. Taken together, metformin suppressed HFD-induced β-cell proliferation independent of the improvement of insulin resistance, partly via direct actions.


Endocrinology ◽  
2014 ◽  
Vol 155 (10) ◽  
pp. 3843-3852 ◽  
Author(s):  
K-Lynn N. Hogh ◽  
Michael N. Craig ◽  
Christopher E. Uy ◽  
Heli Nygren ◽  
Ali Asadi ◽  
...  

Abstract The contribution of peroxisomal proliferator-activated receptor (PPAR)-γ agonism in pancreatic β-cells to the antidiabetic actions of thiazolidinediones has not been clearly elucidated. Genetic models of pancreatic β-cell PPARγ ablation have revealed a potential role for PPARγ in β-cell expansion in obesity but a limited role in normal β-cell physiology. Here we overexpressed PPARγ1 or PPARγ2 specifically in pancreatic β-cells of mice subjected to high-fat feeding using an associated adenovirus (β-PPARγ1-HFD and β-PPARγ2-HFD mice). We show β-cell-specific PPARγ1 or PPARγ2 overexpression in diet-induced obese mice exacerbated obesity-induced glucose intolerance with decreased β-cell mass, increased islet cell apoptosis, and decreased plasma insulin compared with obese control mice (β-eGFP-HFD mice). Analysis of islet lipid composition in β-PPARγ2-HFD mice revealed no significant changes in islet triglyceride content and an increase in only one of eight ceramide species measured. Interestingly β-PPARγ2-HFD islets had significantly lower levels of lysophosphatidylcholines, lipid species shown to enhance insulin secretion in β-cells. Gene expression profiling revealed increased expression of uncoupling protein 2 and genes involved in fatty acid transport and β-oxidation. In summary, transgenic overexpression of PPARγ in β-cells in diet-induced obesity negatively impacts whole-animal carbohydrate metabolism associated with altered islet lipid content, increased expression of β-oxidative genes, and reduced β-cell mass.


Sign in / Sign up

Export Citation Format

Share Document