scholarly journals Erratum: Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255

2013 ◽  
Vol 6 (2) ◽  
pp. 152-152 ◽  
Author(s):  
S. N. Sapkota ◽  
L. Bollinger ◽  
Y. Klinger ◽  
P. Tapponnier ◽  
Y. Gaudemer ◽  
...  
2016 ◽  
Vol 434 ◽  
pp. 187-196 ◽  
Author(s):  
T. Hossler ◽  
L. Bollinger ◽  
S.N. Sapkota ◽  
J. Lavé ◽  
R.M. Gupta ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 71-76 ◽  
Author(s):  
S. N. Sapkota ◽  
L. Bollinger ◽  
Y. Klinger ◽  
P. Tapponnier ◽  
Y. Gaudemer ◽  
...  

Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 408 ◽  
Author(s):  
King ◽  
Quigley ◽  
Clark

We digitize surface rupture maps and compile observational data from 67 publications on ten of eleven historical, surface-rupturing earthquakes in Australia in order to analyze the prevailing characteristics of surface ruptures and other environmental effects in this crystalline basement-dominated intraplate environment. The studied earthquakes occurred between 1968 and 2018, and range in moment magnitude (Mw) from 4.7 to 6.6. All earthquakes involved co-seismic reverse faulting (with varying amounts of strike-slip) on single or multiple (1–6) discrete faults of ≥ 1 km length that are distinguished by orientation and kinematic criteria. Nine of ten earthquakes have surface-rupturing fault orientations that align with prevailing linear anomalies in geophysical (gravity and magnetic) data and bedrock structure (foliations and/or quartz veins and/or intrusive boundaries and/or pre-existing faults), indicating strong control of inherited crustal structure on contemporary faulting. Rupture kinematics are consistent with horizontal shortening driven by regional trajectories of horizontal compressive stress. The lack of precision in seismological data prohibits the assessment of whether surface ruptures project to hypocentral locations via contiguous, planar principal slip zones or whether rupture segmentation occurs between seismogenic depths and the surface. Rupture centroids of 1–4 km in depth indicate predominantly shallow seismic moment release. No studied earthquakes have unambiguous geological evidence for preceding surface-rupturing earthquakes on the same faults and five earthquakes contain evidence of absence of preceding ruptures since the late Pleistocene, collectively highlighting the challenge of using mapped active faults to predict future seismic hazards. Estimated maximum fault slip rates are 0.2–9.1 m Myr-1 with at least one order of uncertainty. New estimates for rupture length, fault dip, and coseismic net slip can be used to improve future iterations of earthquake magnitude—source size—displacement scaling equations. Observed environmental effects include primary surface rupture, secondary fracture/cracks, fissures, rock falls, ground-water anomalies, vegetation damage, sand-blows / liquefaction, displaced rock fragments, and holes from collapsible soil failure, at maximum estimated epicentral distances ranging from 0 to ~250 km. ESI-07 intensity-scale estimates range by ± 3 classes in each earthquake, depending on the effect considered. Comparing Mw-ESI relationships across geologically diverse environments is a fruitful avenue for future research.


2019 ◽  
Vol 750 ◽  
pp. 359-378 ◽  
Author(s):  
Shuai Han ◽  
Haibing Li ◽  
Jiawei Pan ◽  
Haijian Lu ◽  
Yong Zheng ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2010 ◽  
Vol 28 (4) ◽  
Author(s):  
M. P. CHHABRA ◽  
R. K. S. CHAUHAN ◽  
H. N. SRIVASTAVA ◽  
H. M. CHAUDHITRY

Sign in / Sign up

Export Citation Format

Share Document