Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis

2008 ◽  
Vol 14 (11) ◽  
pp. 1227-1235 ◽  
Author(s):  
Manuel A Friese ◽  
Karen B Jakobsen ◽  
Lone Friis ◽  
Ruth Etzensperger ◽  
Matthew J Craner ◽  
...  
2019 ◽  
Vol 199 (3) ◽  
pp. 263-277 ◽  
Author(s):  
L. Yeo ◽  
I. Pujol‐Autonell ◽  
R. Baptista ◽  
M. Eichmann ◽  
D. Kronenberg‐Versteeg ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4967-4967
Author(s):  
Junji Tanaka ◽  
Noriaki Iwao ◽  
Tomomi Toubai ◽  
Yoko Miura ◽  
Naoko Kato ◽  
...  

Abstract Leukemic cells and tumor cells can be escaped from allogeneic recognition by usual cytotoxic T cells because of the low expression level of HLA class I molecules. It has recently been shown that inhibitory natural killer cell receptors (NKRs) on not only NK cells but also on T cells negatively regulate NK cell and T cell functions through their binding to MHC class I molecules. The C-type lectin superfamily inhibitory NKR (CD94/NKG2A) heterodimer recognizes an HLA-E that preferably bound to a peptide derived from the signal sequences of most HLA class I. Therefore, CD94 can monitor the global status of HLA class I on the tumor and leukemic cells and induce cytolytic attack without inhibitory signal against HLA class I decreased target cells. In this study, we expanded CD94-expressing T cells from four different sources of blood mononuclear cells (BMCs) and then investigated their cytolytic characteristics against patients’ primary leukemic cells in order to develop a potential strategy of cell therapy for hematological malignancy. We could get more than 100 fold expansion of CD94-expressing CD8 T cells from normal donor PBMC, apheresed PBMC without G-CSF mobilization from normal donor, apheresed PBMC with G-CSF mobilization from patients after chemotherapy and cord blood after 7 days culture with immobilized anti-CD3 monoclonal antibody (1μg/mL) and IL-15 (5 ng/mL). Cytolytic activities of purified CD94-expressing cells using magnetic cell sorting (MACS) (CD94 > 90%) detected by 4 hours 51 Cr release assay against HLA class I intermediate primary leukemic cells (AML M0, M2, M4, CML CP, BC, MDS overt) (50 < mean fluorescence intensity (MFI) < 150) were 35.6 ± 12.8 % (n=21). However, CTL activities against HLA class I high primary leukemic cells (ATL, ALL, LBL)(MFI>150) were lower than 10 % (6.5 ± 4.2, n=5). Also, CTL activities against HLA class I very high PHA autoblasts and alloblasts (MFI>200) were lower than 5 % (4.0 ± 3.6, n=11). Although the cytolytic activity of CD94-expressing cells roughly depends on the expression of HLA class I molecules in inverse proportion, adhesion molecules and also activating molecules such as NKG2D on effector cells might be important for the regulation of the killing activity. In fact, anti-NKG2D mAb (50 μg/mL) suppressed the cytolytic activity of CD94-expressing cells against patients’ primary leukemic cells (% reduction of cytolytic activity, 22.5± 5.9, n=13). Furthermore, anti-LFA-1 mAb (20 μg/mL) suppressed the cytolytic activity of CD94-expressing cells much more effectively than did anti-NKG2D mAb(% reduction of cytolytic activity, 74.2±15.5, n=13, p<0.01). Our data indicated that the cytolytic activity of inhibitory NKR-expressing cells depends at least partially on NKG2D-activating NKR and also required adhesion through LFA-1. In this study, we were able to expand CD94-expressing CD8 T cells which have both inhibitory receptors (NKG2A) and stimulatoy receptors (NKG2D) as well as LFA-1 and ICAM-1 from four different sources of BMCs. Therefore, it may be possible to expand CD94-expressing cells from various sources of BMCs with cytolytic activity against both autologous and allogeneic primary leukemic cells for a new strategy of cell therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto Castro-Gutierrez ◽  
Aimon Alkanani ◽  
Clayton E. Mathews ◽  
Aaron Michels ◽  
Holger A. Russ

Type 1 diabetes results from an autoimmune attack directed at pancreatic beta cells predominantly mediated by T cells. Transplantation of stem cell derived beta-like cells (sBC) have been shown to rescue diabetes in preclinical animal models. However, how sBC will respond to an inflammatory environment with diabetogenic T cells in a strict human setting has not been determined. This is due to the lack of model systems that closely recapitulates human T1D. Here, we present a reliable in vitro assay to measure autologous CD8 T cell stimulation against sBC in a human setting. Our data shows that upon pro-inflammatory cytokine exposure, sBC upregulate Human Leukocyte Antigen (HLA) class I molecules which allows for their recognition by diabetogenic CD8 T cells. To protect sBC from this immune recognition, we utilized genome engineering to delete surface expression of HLA class I molecules and to integrate an inducible overexpression system for the immune checkpoint inhibitor Programmed Death Ligand 1 (PD-L1). Genetically engineered sBC that lack HLA surface expression or overexpress PD-L1 showed reduced stimulation of diabetogenic CD8 T cells when compared to unmodified cells. Here, we present evidence that manipulation of HLA class I and PD-L1 receptors on sBC can provide protection from diabetes-specific immune recognition in a human setting.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2045-2052 ◽  
Author(s):  
MC Turco ◽  
F Alfinito ◽  
M De Felice ◽  
A Lamberti ◽  
S Ferrone ◽  
...  

Abstract Soluble anti-HLA class I monoclonal antibodies (MoAbs) modulate normal T-lymphocyte proliferation induced via the CD3/Ti and the CD2 pathway, but do not induce proliferation of normal T lymphocytes in the absence of additional mitogenic stimuli. In this report, we show that anti-HLA class I MoAbs induce DNA synthesis in peripheral blood mononuclear cells from a patient with a CD4+CD8+T-prolymphocytic leukemia (T-PLL) and from a patient with a CD4-CD8+ T-chronic lymphocytic leukemia (T- CLL), in the absence of detectable additional mitogenic stimuli. Proliferation of leukemic T cells is induced by both whole Igs and Fab' fragments of anti-HLA class I MoAbs, arguing in favor of their direct interactions with the proliferating cells as the mechanism underlying the mitogenic effect. This interpretation is also supported by the ability of anti-HLA class I MoAbs to induce proliferation of leukemic T- cell preparations, depleted of accessory cells. DNA synthesis in T-CLL and T-PLL cells is preceded by expression of G1-specific messenger RNAs, ie. c-myc, 2F1, Tac, and interferon-gamma, in activated cells. Cell proliferation is inhibited by the protein kinase C inhibitor H7, indicating that activation of this enzyme is required for the mitogenic effect of anti-HLA class I MoAbs. The latter inhibit the proliferation of T-CLL cells as well as that of normal T cells stimulated with anti- CD3 MoAbs and enhance that of both types of cells stimulated with anti- CD2 MoAbs. In addition, anti-HLA class I MoAb Q6/64 in combination with anti-CD2 MoAb 9.6 or MoAb 9–1 induces proliferation of leukemic T cells to a greater extent than the individual MoAbs, but is not mitogenic for normal T cells. Anti-HLA class I MoAbs restore the cytolytic activity of T-CLL cells that is lost after 5 days of incubation of control medium, suggesting that HLA class I antigens may mediate a signal contributing to the activation state. The present results indicate that leukemic T-cell proliferation can be triggered via HLA class I molecules and suggest a potential role for these antigens in the in vivo growth of malignant clones.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3629-3639 ◽  
Author(s):  
Laurent Genestier ◽  
Romain Paillot ◽  
Nathalie Bonnefoy-Berard ◽  
Geneviéve Meffre ◽  
Monique Flacher ◽  
...  

Abstract In addition to their major function in antigen presentation and natural killer cell activity regulation, HLA class I molecules may modulate T-cell activation and proliferation. Monoclonal antibodies (MoAbs) that recognize distinct epitopes of HLA class I molecules were reported to interfere with T-cell proliferation. We show here that two MoAbs (mouse MoAb90 and rat YTH862) that bind to an epitope of the α1 domain of HLA class I heavy chain induce apoptotic cell death of activated, but not resting, peripheral T lymphocytes. Other reference anti-HLA class I antibodies specific for distinct epitopes of the α1 (B9.12.1), α2 (W6/32), or α3 (TP25.99) domains of the heavy chain decreased T-cell proliferation but had little or no apoptotic effect. Apoptosis shown by DNA fragmentation, phosphatidylserine externalization, and decrease of mitochondrial transmembrane potential was observed whatever the type of T-cell activator. Apoptosis did not result from Fas/Fas-L interaction and distinct though partly overlapping populations of activated T cells were susceptible to Fas– and HLA class I–mediated apoptosis, respectively. Induction of apoptosis did not require HLA class I cross-linking inasmuch as it could be observed with monovalent Fab′ fragments. The data indicate that MoAb90 and YTH862 directed against the α1 domain of HLA class I trigger apoptosis of activated T lymphocytes by a pathway which does not involve Fas-ligand.


2015 ◽  
Vol 183 (2) ◽  
pp. 206-220 ◽  
Author(s):  
K. Jones ◽  
L. Wockner ◽  
R. M. Brennan ◽  
C. Keane ◽  
P. K. Chattopadhyay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document