Expansion of Inhibitory NK Receptor (CD94/NKG2A)-Expressing CD8 T Cells from Various Blood Mononuclear Cells with Cytolytic Activity Against Primary Leukemic Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4967-4967
Author(s):  
Junji Tanaka ◽  
Noriaki Iwao ◽  
Tomomi Toubai ◽  
Yoko Miura ◽  
Naoko Kato ◽  
...  

Abstract Leukemic cells and tumor cells can be escaped from allogeneic recognition by usual cytotoxic T cells because of the low expression level of HLA class I molecules. It has recently been shown that inhibitory natural killer cell receptors (NKRs) on not only NK cells but also on T cells negatively regulate NK cell and T cell functions through their binding to MHC class I molecules. The C-type lectin superfamily inhibitory NKR (CD94/NKG2A) heterodimer recognizes an HLA-E that preferably bound to a peptide derived from the signal sequences of most HLA class I. Therefore, CD94 can monitor the global status of HLA class I on the tumor and leukemic cells and induce cytolytic attack without inhibitory signal against HLA class I decreased target cells. In this study, we expanded CD94-expressing T cells from four different sources of blood mononuclear cells (BMCs) and then investigated their cytolytic characteristics against patients’ primary leukemic cells in order to develop a potential strategy of cell therapy for hematological malignancy. We could get more than 100 fold expansion of CD94-expressing CD8 T cells from normal donor PBMC, apheresed PBMC without G-CSF mobilization from normal donor, apheresed PBMC with G-CSF mobilization from patients after chemotherapy and cord blood after 7 days culture with immobilized anti-CD3 monoclonal antibody (1μg/mL) and IL-15 (5 ng/mL). Cytolytic activities of purified CD94-expressing cells using magnetic cell sorting (MACS) (CD94 > 90%) detected by 4 hours 51 Cr release assay against HLA class I intermediate primary leukemic cells (AML M0, M2, M4, CML CP, BC, MDS overt) (50 < mean fluorescence intensity (MFI) < 150) were 35.6 ± 12.8 % (n=21). However, CTL activities against HLA class I high primary leukemic cells (ATL, ALL, LBL)(MFI>150) were lower than 10 % (6.5 ± 4.2, n=5). Also, CTL activities against HLA class I very high PHA autoblasts and alloblasts (MFI>200) were lower than 5 % (4.0 ± 3.6, n=11). Although the cytolytic activity of CD94-expressing cells roughly depends on the expression of HLA class I molecules in inverse proportion, adhesion molecules and also activating molecules such as NKG2D on effector cells might be important for the regulation of the killing activity. In fact, anti-NKG2D mAb (50 μg/mL) suppressed the cytolytic activity of CD94-expressing cells against patients’ primary leukemic cells (% reduction of cytolytic activity, 22.5± 5.9, n=13). Furthermore, anti-LFA-1 mAb (20 μg/mL) suppressed the cytolytic activity of CD94-expressing cells much more effectively than did anti-NKG2D mAb(% reduction of cytolytic activity, 74.2±15.5, n=13, p<0.01). Our data indicated that the cytolytic activity of inhibitory NKR-expressing cells depends at least partially on NKG2D-activating NKR and also required adhesion through LFA-1. In this study, we were able to expand CD94-expressing CD8 T cells which have both inhibitory receptors (NKG2A) and stimulatoy receptors (NKG2D) as well as LFA-1 and ICAM-1 from four different sources of BMCs. Therefore, it may be possible to expand CD94-expressing cells from various sources of BMCs with cytolytic activity against both autologous and allogeneic primary leukemic cells for a new strategy of cell therapy.

Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 768-774 ◽  
Author(s):  
Junji Tanaka ◽  
Tomomi Toubai ◽  
Yutaka Tsutsumi ◽  
Yoko Miura ◽  
Naoko Kato ◽  
...  

AbstractInhibitory natural killer cell receptor (NKR)–expressing cells may induce a graft-versus-leukemia/tumor (GVL/T) effect against leukemic cells and tumor cells that have mismatched or decreased expression of HLA class I molecules and may not cause graft-versus-host disease (GVHD) against host cells that have normal expression of HLA class I molecules. In our study, we were able to expand inhibitory NKR (CD94/NKG2A)–expressing CD8+ T cells from granulocyte colonystimulating factor (G-CSF)–mobilized peripheral blood mononuclear cells (G-PBMCs) by more than 500-fold using stimulation by an anti-CD3 monoclonal antibody with interleukin 15 (IL-15). These expanded and purified CD94-expressing cells attacked various malignant cell lines, including solid cancer cell lines, as well as the patients' leukemic cells but not autologous and allogeneic phytohemagglutinin (PHA) blasts in vitro. Also, these CD94-expressing cells prevented the growth of K562 leukemic cells and CW2 colon cancer cells in NOD/SCID mice in vivo. On the other hand, the CD94-expressing cells have low responsiveness to alloantigen in mixed lymphocyte culture (MLC) and have high transforming growth factor (TGF)–β1– but low IL-2– producing capacity. Therefore, CD94-expressing cells with cytolytic activity against the recipient's leukemic and tumor cells without enhancement of alloresponse might be able to be expanded from donor G-PBMCs.


2019 ◽  
Vol 199 (3) ◽  
pp. 263-277 ◽  
Author(s):  
L. Yeo ◽  
I. Pujol‐Autonell ◽  
R. Baptista ◽  
M. Eichmann ◽  
D. Kronenberg‐Versteeg ◽  
...  

2008 ◽  
Vol 14 (11) ◽  
pp. 1227-1235 ◽  
Author(s):  
Manuel A Friese ◽  
Karen B Jakobsen ◽  
Lone Friis ◽  
Ruth Etzensperger ◽  
Matthew J Craner ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto Castro-Gutierrez ◽  
Aimon Alkanani ◽  
Clayton E. Mathews ◽  
Aaron Michels ◽  
Holger A. Russ

Type 1 diabetes results from an autoimmune attack directed at pancreatic beta cells predominantly mediated by T cells. Transplantation of stem cell derived beta-like cells (sBC) have been shown to rescue diabetes in preclinical animal models. However, how sBC will respond to an inflammatory environment with diabetogenic T cells in a strict human setting has not been determined. This is due to the lack of model systems that closely recapitulates human T1D. Here, we present a reliable in vitro assay to measure autologous CD8 T cell stimulation against sBC in a human setting. Our data shows that upon pro-inflammatory cytokine exposure, sBC upregulate Human Leukocyte Antigen (HLA) class I molecules which allows for their recognition by diabetogenic CD8 T cells. To protect sBC from this immune recognition, we utilized genome engineering to delete surface expression of HLA class I molecules and to integrate an inducible overexpression system for the immune checkpoint inhibitor Programmed Death Ligand 1 (PD-L1). Genetically engineered sBC that lack HLA surface expression or overexpress PD-L1 showed reduced stimulation of diabetogenic CD8 T cells when compared to unmodified cells. Here, we present evidence that manipulation of HLA class I and PD-L1 receptors on sBC can provide protection from diabetes-specific immune recognition in a human setting.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1994-1995 ◽  
Author(s):  
Masako Moriuchi ◽  
Hiroyuki Moriuchi

Abstract Although it is widely believed that viral clearance is mediated principally by the destruction of infected cells by cytotoxic T cells, noncytolytic antiviral activity of CD8+ T cells may play a role in preventing the progression to disease in infections with immunodeficiency viruses and hepatitis B virus. We demonstrate here that (1) replication of human T-lymphotropic virus type I (HTLV-I) is more readily detected from CD8+ T-cell–depleted (CD8−) peripheral blood mononuclear cells (PBMCs) of healthy HTLV-I carriers than from unfractionated PBMCs, (2) cocultures of CD8− PBMCs with autologous or allogeneic CD8+ T cells suppressed HTLV-I replication, and (3) CD8+ T-cell anti-HTLV-I activity is not abrogated intrans-well cultures in which CD8+ cells are separated from CD8− PBMCs by a permeable membrane filter. These results suggest that class I-unrestricted noncytolytic anti–HTLV-I activity is mediated, at least in part by a soluble factor(s), and may play a role in the pathogenesis of HTLV-I infection.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2045-2052 ◽  
Author(s):  
MC Turco ◽  
F Alfinito ◽  
M De Felice ◽  
A Lamberti ◽  
S Ferrone ◽  
...  

Abstract Soluble anti-HLA class I monoclonal antibodies (MoAbs) modulate normal T-lymphocyte proliferation induced via the CD3/Ti and the CD2 pathway, but do not induce proliferation of normal T lymphocytes in the absence of additional mitogenic stimuli. In this report, we show that anti-HLA class I MoAbs induce DNA synthesis in peripheral blood mononuclear cells from a patient with a CD4+CD8+T-prolymphocytic leukemia (T-PLL) and from a patient with a CD4-CD8+ T-chronic lymphocytic leukemia (T- CLL), in the absence of detectable additional mitogenic stimuli. Proliferation of leukemic T cells is induced by both whole Igs and Fab' fragments of anti-HLA class I MoAbs, arguing in favor of their direct interactions with the proliferating cells as the mechanism underlying the mitogenic effect. This interpretation is also supported by the ability of anti-HLA class I MoAbs to induce proliferation of leukemic T- cell preparations, depleted of accessory cells. DNA synthesis in T-CLL and T-PLL cells is preceded by expression of G1-specific messenger RNAs, ie. c-myc, 2F1, Tac, and interferon-gamma, in activated cells. Cell proliferation is inhibited by the protein kinase C inhibitor H7, indicating that activation of this enzyme is required for the mitogenic effect of anti-HLA class I MoAbs. The latter inhibit the proliferation of T-CLL cells as well as that of normal T cells stimulated with anti- CD3 MoAbs and enhance that of both types of cells stimulated with anti- CD2 MoAbs. In addition, anti-HLA class I MoAb Q6/64 in combination with anti-CD2 MoAb 9.6 or MoAb 9–1 induces proliferation of leukemic T cells to a greater extent than the individual MoAbs, but is not mitogenic for normal T cells. Anti-HLA class I MoAbs restore the cytolytic activity of T-CLL cells that is lost after 5 days of incubation of control medium, suggesting that HLA class I antigens may mediate a signal contributing to the activation state. The present results indicate that leukemic T-cell proliferation can be triggered via HLA class I molecules and suggest a potential role for these antigens in the in vivo growth of malignant clones.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3629-3639 ◽  
Author(s):  
Laurent Genestier ◽  
Romain Paillot ◽  
Nathalie Bonnefoy-Berard ◽  
Geneviéve Meffre ◽  
Monique Flacher ◽  
...  

Abstract In addition to their major function in antigen presentation and natural killer cell activity regulation, HLA class I molecules may modulate T-cell activation and proliferation. Monoclonal antibodies (MoAbs) that recognize distinct epitopes of HLA class I molecules were reported to interfere with T-cell proliferation. We show here that two MoAbs (mouse MoAb90 and rat YTH862) that bind to an epitope of the α1 domain of HLA class I heavy chain induce apoptotic cell death of activated, but not resting, peripheral T lymphocytes. Other reference anti-HLA class I antibodies specific for distinct epitopes of the α1 (B9.12.1), α2 (W6/32), or α3 (TP25.99) domains of the heavy chain decreased T-cell proliferation but had little or no apoptotic effect. Apoptosis shown by DNA fragmentation, phosphatidylserine externalization, and decrease of mitochondrial transmembrane potential was observed whatever the type of T-cell activator. Apoptosis did not result from Fas/Fas-L interaction and distinct though partly overlapping populations of activated T cells were susceptible to Fas– and HLA class I–mediated apoptosis, respectively. Induction of apoptosis did not require HLA class I cross-linking inasmuch as it could be observed with monovalent Fab′ fragments. The data indicate that MoAb90 and YTH862 directed against the α1 domain of HLA class I trigger apoptosis of activated T lymphocytes by a pathway which does not involve Fas-ligand.


Sign in / Sign up

Export Citation Format

Share Document