Clinical trials of cancer therapy creates tension in Italian biomedical community

1998 ◽  
Vol 4 (3) ◽  
pp. 258-259 ◽  
Author(s):  
Martina Ballmaier
2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


2021 ◽  
Author(s):  
Moataz Dowaidar

Except in human clinical trials, preclinical tests showed the potential of Salmonella bacteria for tumor therapy. There are still various challenges to tackle before salmonella bacteria may be employed to treat human cancer. Due to its pathogenic nature, attenuation is essential to minimize the host's harmful effects of bacterial infection. Loss of anticancer efficacy from bacterial virulence attenuation can be compensated by giving therapeutic payloads to microorganisms. Bacteria can also be linked to micro-or nanomaterials with diverse properties, such as drug-loaded, photocatalytic and/or magnetic-sensing nanoparticles, using the net negative charge of the bacteria. Combining bacteria-mediated cancer treatment with other medicines that have been clinically shown to be helpful but have limits may provide surprising therapeutic results. Recently, this strategy has received attention and is underway. The use of live germs for cancer treatment has not yet been approved for human clinical trials. The non-invasive oral form of administration benefits from safety, making it more suitable for clinical cancer patients.Infection of live germs through systemic means, on the other hand, involves toxicity risk. Although Salmonella bacteria can be genetically manipulated with high tumor targeting, harm to normal tissues can not be excluded when medications with nonspecific toxicity are administered. It is preferred if the action of selected drugs may be restricted to the tumor site rather than healthy tissues, thereby boosting cancer therapy safety. In recent years, many regulatory mechanisms have been developed to manage pharmaceutical distribution through live bacterial vectors. Engineered salmonella can accumulate 1000 times greater than normal tissue density in the tumor. The QS-regulated mechanism, which initiates gene expression when bacterial density exceeds a particular threshold level, also promises Salmonella bacteria for targeted medication delivery. Nanovesicle structures of Salmonella bacteria can also be used as biocompatible nanocarriers to deliver functional medicinal chemicals in cancer therapy. Surface-modified nanovesicles preferably attach to tumor cells and are swallowed by receptor-mediated endocytosis before being destroyed to release packed drugs. The xenograft methodology, which comprises the implantation of cultivated tumor cell lines into immunodeficient mice, has often been used in preclinical research revealing favorable results about the anticancer effects of genetically engineered salmonella.


2014 ◽  
Vol 75 (4) ◽  
pp. 270-273 ◽  
Author(s):  
Lynn J. Howie ◽  
Jeffrey M. Peppercorn

2021 ◽  
Vol 11 ◽  
Author(s):  
Osmel Companioni ◽  
Cristina Mir ◽  
Yoelsis Garcia-Mayea ◽  
Matilde E. LLeonart

Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.


Author(s):  
Zhen Luo ◽  
Yujuan Gao ◽  
Zhongyu Duan ◽  
Yu Yi ◽  
Hao Wang

Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.


Author(s):  
Xinjie Liang ◽  
Xuefei Bao ◽  
Guoliang Chen

: SET protein is a multi-functional oncoprotein that is ubiquitously expressed in most tumor cells. Dysregulation of SET has been associated with many types of cancer. Due to ever-accumulating evidence of its strong correlation with both poor prognosis and drug resistance, the targeting of SET is starting to be explored. SET is currently regarded as a potential target for cancer therapy, and several inhibitors are being developed for clinical trials. In this review, the physiological and pathological functions of SET, as well as its antagonists, will be discussed along with the prospects and challenges involved with translating SET inhibitors into bona fide therapeutic options.


2005 ◽  
Vol 2 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Richard J. Pietras ◽  
Olga K. Weinberg

Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activityin vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na+/H+ exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell–cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies, including ovarian, non-small cell lung and breast cancers. Clinical trials with squalamine alone or combined with standard chemotherapies or other biologic therapies, including antiangiogenic agents, should be considered for selected cancer patients, and further study of the mechanism of action and bioactivity of squalamine is warranted.


Sign in / Sign up

Export Citation Format

Share Document