scholarly journals In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts

2009 ◽  
Vol 6 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Jean Y Perentes ◽  
Trevor D McKee ◽  
Carsten D Ley ◽  
Hannah Mathiew ◽  
Michelle Dawson ◽  
...  
2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Adam W Akerman ◽  
Elizabeth K Nadeau ◽  
Robert E Stroud ◽  
Rupak Mukherjee ◽  
John S Ikonomidis ◽  
...  

Background: MicroRNA-133a (miR133a) is a small non-coding RNA, which represses the translation of multiple mRNAs. This laboratory has reported an inverse relationship between aortic diameter and miR133a abundance in aortic tissue from patients with thoracic aortic aneurysm (TAA); as diameter increased, the abundance of miR133a decreased. Given that wall tension at a given pressure increases with increasing vessel diameter (Law of LaPlace), this study tested the hypothesis that elevated aortic wall tension results in a loss of miR-133a. Methods/Results: TAA was induced in wild type mice using an established murine model (0.5M CaCl 2 application, 15 min). MiR133a abundance (QPCR) was reduced in TAA tissue (3-wk TAA, 42.1±8.6% p<0.05 vs mice without TAA (100%)). In two in vivo models of elevated wall tension ( simulated hypertension ): 1) ANGII (angiotensin II infusion; 1.44mg/kg/day), and 2) BPH2 (spontaneously hypertensive mice, The Jackson Laboratory, Stock #003005), miR133a levels were decreased compared to normotensive controls (ANGII: 53.0±4.3%; BPH2: 51.7±7.0%; p<0.05 vs normotensive control (100%)). Aortic rings from wild type mice were hung on parallel wires in an ex vivo tissue myograph at 0.7 g, then ANGII (100nM) was added to the tissue baths, which generated increased tension (1.21±0.15g) and resulted in reduced tissue miR133a abundance (46.0±12%; p<0.05 vs no AngII,). Furthermore, increased tension alone (1.5g, 3 hr) resulted in decreased tissue miR133a abundance (39.0±7.0%; p<0.05 vs 0.7 g tension). Isolated primary aortic cell lines (fibroblasts (FB) and smooth muscle cells (SMC)) were exposed to biaxial cyclic stretch for 3 hr. FB miR133a was reduced (62.8±8.3%; p<0.05 vs unstretched control (100%)), while SMC miR133a abundance remained unchanged. Conclusion: The significance of these unique findings is 2-fold: First, tension alone was sufficient to decrease miR133a abundance in aortic tissue. Second, increased tension reduced miR133a abundance in FB, a cell type that is responsible for extracellular matrix remodeling. These findings suggest changes in wall tension alone ( hypertension ) may be associated with pathological extracellular matrix remodeling, in part, through the loss of miR133a in fibroblasts.


2008 ◽  
Vol 103 (9) ◽  
pp. 948-956 ◽  
Author(s):  
Agata K. Levay ◽  
Jacqueline D. Peacock ◽  
Yinhui Lu ◽  
Manuel Koch ◽  
Robert B. Hinton ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


Sign in / Sign up

Export Citation Format

Share Document