Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects

2014 ◽  
Vol 11 (4) ◽  
pp. 399-402 ◽  
Author(s):  
Bin Shen ◽  
Wensheng Zhang ◽  
Jun Zhang ◽  
Jiankui Zhou ◽  
Jianying Wang ◽  
...  
2019 ◽  
Author(s):  
Jacob Lamberth ◽  
Laura Daley ◽  
Pachai Natarajan ◽  
Stanislav Khoruzhenko ◽  
Nurit Becker ◽  
...  

ABSTRACTCRISPR technology has opened up many diverse genome editing possibilities in human somatic cells, but has been limited in the therapeutic realm by both potential off-target effects and low genome modification efficiencies. Recent advancements to combat these limitations include delivering Cas9 nucleases directly to cells as highly purified ribonucleoproteins (RNPs) instead of the conventional plasmid DNA and RNA-based approaches. Here, we extend RNP-based delivery in cell culture to a less characterized CRISPR format which implements paired Cas9 nickases. The use of paired nickase Cas9 RNP system, combined with a GMP-compliant non-viral delivery technology, enables editing in human cells with high specificity and high efficiency, a development that opens up the technology for further exploration into a more therapeutic role.


2011 ◽  
Vol 33 (7) ◽  
pp. 665-683 ◽  
Author(s):  
An XIAO ◽  
Ying-Ying HU ◽  
Wei-Ye WANG ◽  
Zhi-Peng YANG ◽  
Zhan-Xiang WANG ◽  
...  

2017 ◽  
Vol 23 (3) ◽  
pp. 454-466 ◽  
Author(s):  
Daniele R. Nogueira-Librelotto ◽  
Cristiane F. Codevilla ◽  
Ammad Farooqi ◽  
Clarice M. B. Rolim

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 677
Author(s):  
Nabil Killiny ◽  
Faraj Hijaz ◽  
Pedro Gonzalez-Blanco ◽  
Shelley E. Jones ◽  
Myrtho O. Pierre ◽  
...  

Recently in Florida, foliar treatments using products with the antibiotics oxytetracycline and streptomycin have been approved for the treatment of citrus Huanglongbing (HLB), which is caused by the putative bacterial pathogen ‘Candidatus Liberibacter asiaticus’. Herein, we assessed the levels of oxytetracycline and ‘Ca. L. asiaticus’ titers in citrus trees upon foliar applications with and without a variety of commercial penetrant adjuvants and upon trunk injection. The level of oxytetracycline in citrus leaves was measured using an oxytetracycline ELISA kit and ‘Ca. L. asiaticus’ titer was measured using quantitative PCR. Low levels of oxytetracycline were taken up by citrus leaves after foliar sprays of oxytetracycline in water. Addition of various adjuvants to the oxytetracycline solution showed minimal effects on its uptake by citrus leaves. The level of oxytetracycline in leaves from trunk-injected trees was higher than those treated with all foliar applications. The titer of ‘Ca. L. asiaticus’ in the midrib of leaves from trees receiving oxytetracycline by foliar application was not affected after four days and thirty days of application, whereas the titer was significantly reduced in oxytetracycline-injected trees thirty days after treatment. Investigation of citrus leaves using microscopy showed that they are covered by a thick lipidized cuticle. Perforation of citrus leaf cuticle with a laser significantly increased the uptake of oxytetracycline, decreasing the titer of ‘Ca. L. asiaticus’ in citrus leaves upon foliar application. Taken together, our findings indicate that trunk injection is more efficient than foliar spray even after the use of adjuvants. Our conclusion could help in setting useful recommendations for the application of oxytetracycline in citrus to improve tree health, minimize the amount of applied antibiotic, reduce environmental exposure, and limit off-target effects.


Author(s):  
Vratko Himič ◽  
Kay E. Davies

AbstractDuchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a ‘one-hit’ curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.


Author(s):  
Ivana Gessara ◽  
Falk Dittrich ◽  
Moritz Hertel ◽  
Staffan Hildebrand ◽  
Alexander Pfeifer ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. 1714-1739
Author(s):  
Isabel Weisheit ◽  
Joseph A. Kroeger ◽  
Rainer Malik ◽  
Benedikt Wefers ◽  
Peter Lichtner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document