targeted genome modification
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Grant A Rybnicky ◽  
Nicholas A Fackler ◽  
Ashty S Karim ◽  
Michael Köpke ◽  
Michael C Jewett

RNA-guided nucleases from clustered regularly interspaced short palindromic repeats (CRISPR) systems expand opportunities for precise, targeted genome modification. Endogenous CRISPR systems in many bacteria and archaea are particularly attractive to circumvent expression, functionality, and unintended activity hurdles posed by heterologous CRISPR effectors. However, each CRISPR system recognizes a unique set of PAM sequences, which requires extensive screening of randomized DNA libraries. This challenge makes it difficult to develop endogenous CRISPR systems, especially in organisms that are slow-growing or have transformation idiosyncrasies. To address this limitation, we present Spacer2PAM, an easy-to-use, easy-to-interpret R package built to identify potential PAM sequences for any CRISPR system given its corresponding CRISPR array as input. Spacer2PAM can be used in Quick mode to generate a single PAM prediction that is likely to be functional or in Comprehensive mode to inform targeted, unpooled PAM libraries small enough to screen in difficult to transform organisms. We demonstrate Spacer2PAM by predicting PAM sequences for industrially relevant organisms and experimentally identifying seven PAM sequences that mediate interference from the Spacer2PAM-predicted PAM library for the type I-B CRISPR system from Clostridium autoethanogenum. We anticipate that Spacer2PAM will facilitate the use of endogenous CRISPR systems for industrial biotechnology and synthetic biology.


2020 ◽  
Vol 117 (37) ◽  
pp. 22890-22899 ◽  
Author(s):  
Fillip Port ◽  
Maja Starostecka ◽  
Michael Boutros

CRISPR-Cas genome engineering has revolutionized biomedical research by enabling targeted genome modification with unprecedented ease. In the popular model organism Drosophila melanogaster, gene editing has so far relied exclusively on the prototypical CRISPR nuclease Cas9. Additional CRISPR systems could expand the genomic target space, offer additional modes of regulation, and enable the independent manipulation of genes in different cells of the same animal. Here we describe a platform for efficient Cas12a gene editing in Drosophila. We show that Cas12a from Lachnospiraceae bacterium, but not Acidaminococcus spec., can mediate robust gene editing in vivo. In combination with most CRISPR RNAs (crRNAs), LbCas12a activity is high at 29 °C, but low at 18 °C, enabling modulation of gene editing by temperature. LbCas12a can directly utilize compact crRNA arrays that are substantially easier to construct than Cas9 single-guide RNA arrays, facilitating multiplex genome engineering. Furthermore, we show that conditional expression of LbCas12a is sufficient to mediate tightly controlled gene editing in a variety of tissues, allowing detailed analysis of gene function in a multicellular organism. We also test a variant of LbCas12a with a D156R point mutation and show that it has substantially higher activity and outperforms a state-of-the-art Cas9 system in identifying essential genes. Cas12a gene editing expands the genome-engineering toolbox in Drosophila and will be a powerful method for the functional annotation of the genome. This work also presents a fully genetically encoded Cas12a system in an animal, laying out principles for the development of similar systems in other genetically tractable organisms for multiplexed conditional genome engineering.


Author(s):  
Fillip Port ◽  
Maja Starostecka ◽  
Michael Boutros

AbstractCRISPR-Cas genome engineering has revolutionised biomedical research by enabling targeted genome modification with unprecedented ease. In the popular model organism Drosophila melanogaster gene editing has so far relied exclusively on the prototypical CRISPR nuclease Cas9. The availability of additional CRISPR systems could expand the genomic target space, offer additional modes of regulation and enable the independent manipulation of genes in different cell populations of the same animal. Here we describe a platform for efficient Cas12a gene editing in Drosophila. We show that Cas12a from Lachnospiraceae bacterium, but not Acidaminococcus spec., can mediate robust gene editing in vivo. In combination with most crRNAs, LbCas12a activity is strongly suppressed at lower temperatures, enabling control of gene editing by simply modulating temperature. LbCas12a can directly utilize compact crRNAs arrays that are substantially easier to construct than Cas9 sgRNA arrays, facilitating multiplex genome engineering of several target sites in parallel. Targeting genes with arrays of three crRNAs results in the induction of loss-of function phenotypes with comparable efficiencies than a state-of-the-art Cas9 system. Lastly, we show that cell type-specific expression of LbCas12a is sufficient to mediate tightly controlled gene editing in a variety of tissues, allowing detailed analysis of gene function in this multicellular organism. Cas12a gene editing substantially expands the genome engineering toolbox in this organism and will be a powerful method for the functional annotation of the Drosophila genome. This work also lays out principles for the development of multiplexed transgenic Cas12a genome engineering systems in other genetically tractable organisms.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Anna Chiara Pirona ◽  
Risky Oktriani ◽  
Michael Boettcher ◽  
Jörg D Hoheisel

Abstract The combination of lentiviruses with techniques such as CRISPR-Cas9 has resulted in efficient and precise processes for targeted genome modification. An often-limiting aspect, however, is the efficiency of cell transduction. Low efficiencies with particular cell types and/or the high complexity of lentiviral libraries can cause insufficient representation. Here, we present a protocol that yielded substantial increases in transduction efficiency in various cell lines in comparison to several other procedures.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wen Xu ◽  
Wei Song ◽  
Yongxing Yang ◽  
Ying Wu ◽  
Xinxin Lv ◽  
...  

Abstract Background Application of the CRISPR/Cas9 system or its derived base editors enables targeted genome modification, thereby providing a programmable tool to exploit gene functions and to improve crop traits. Results We report that PmCDA1 is much more efficient than rAPOBEC1 when fused to CRISPR/Cas9 nickase for the conversion of cytosine (C) to thymine (T) in rice. Three high-fidelity SpCas9 variants, eSpCas9(1.1), SpCas9-HF2 and HypaCas9, were engineered to serve with PmCDA1 (pBEs) as C-to-T base editors. These three high-fidelity editors had distinct multiplex-genome editing efficiencies. To substantially improve their base-editing efficiencies, a tandemly arrayed tRNA-modified single guide RNA (sgRNA) architecture was applied. The efficiency of eSpCas9(1.1)-pBE was enhanced up to 25.5-fold with an acceptable off-target effect. Moreover, two- to five-fold improvement was observed for knock-out mutation frequency by these high-fidelity Cas9s under the direction of the tRNA-modified sgRNA architecture. Conclusions We have engineered a diverse toolkit for efficient and precise genome engineering in rice, thus making genome editing for plant research and crop improvement more flexible.


2019 ◽  
Vol 20 (11) ◽  
pp. 2647 ◽  
Author(s):  
Iris Koeppel ◽  
Christian Hertig ◽  
Robert Hoffie ◽  
Jochen Kumlehn

Domestication and breeding have created productive crops that are adapted to the climatic conditions of their growing regions. Initially, this process solely relied on the frequent occurrence of spontaneous mutations and the recombination of resultant gene variants. Later, treatments with ionizing radiation or mutagenic chemicals facilitated dramatically increased mutation rates, which remarkably extended the genetic diversity of crop plants. However, a major drawback of conventionally induced mutagenesis is that genetic alterations occur simultaneously across the whole genome and at very high numbers per individual plant. By contrast, the newly emerging Cas endonuclease technology allows for the induction of mutations at user-defined positions in the plant genome. In fundamental and breeding-oriented research, this opens up unprecedented opportunities for the elucidation of gene functions and the targeted improvement of plant performance. This review covers historical aspects of the development of customizable endonucleases, information on the mechanisms of targeted genome modification, as well as hitherto reported applications of Cas endonuclease technology in barley and wheat that are the agronomically most important members of the temperate cereals. Finally, current trends in the further development of this technology and some ensuing future opportunities for research and biotechnological application are presented.


2016 ◽  
Vol 43 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Chao Feng ◽  
Jing Yuan ◽  
Rui Wang ◽  
Yang Liu ◽  
James A. Birchler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document