Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation

2008 ◽  
Vol 3 (4) ◽  
pp. 663-673 ◽  
Author(s):  
Gaspar Banfalvi
Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Massimo Pancione ◽  
Luigi Cerulo ◽  
Andrea Remo ◽  
Guido Giordano ◽  
Álvaro Gutierrez-Uzquiza ◽  
...  

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


BioEssays ◽  
2020 ◽  
Vol 42 (9) ◽  
pp. 1900116
Author(s):  
Marie Goepp ◽  
Delphine Le Guennec ◽  
Adrien Rossary ◽  
Marie‐Paule Vasson

Lab on a Chip ◽  
2015 ◽  
Vol 15 (5) ◽  
pp. 1250-1254 ◽  
Author(s):  
Seungjeong Song ◽  
Minseok S. Kim ◽  
Jaeyeon Lee ◽  
Sungyoung Choi

This communication presents a microfluidic method for size-based cell sorting, which provides a simple and robust approach for cell cycle synchronization by manual and stand-alone operation.


2021 ◽  
Author(s):  
Shixuan Liu ◽  
Ceryl Tan ◽  
Chloe Melo-Gavin ◽  
Kevin G. Mark ◽  
Miriam Bracha Ginzberg ◽  
...  

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. This tight control of cell size involves both cell size checkpoints (e.g., delaying cell cycle progression for small cells) and size-dependent compensation in rates of mass accumulation (e.g., slowdown of cellular growth in large cells). We previously identified that the mammalian cell size checkpoint is mediated by a selective activation of the p38 MAPK pathway in small cells. However, mechanisms underlying the size-dependent compensation of cellular growth remain unknown. In this study, we quantified global rates of protein synthesis and degradation in naturally large and small cells, as well as in conditions that trigger a size-dependent compensation in cellular growth. Rates of protein synthesis increase proportionally with cell size in both perturbed and unperturbed conditions, as well as across cell cycle stages. Additionally, large cells exhibit elevated rates of global protein degradation and increased levels of activated proteasomes. Conditions that trigger a large-size-induced slowdown of cellular growth also promote proteasome-mediated global protein degradation, which initiates only after growth rate compensation occurs. Interestingly, the elevated rates of global protein degradation in large cells were disproportionately higher than the increase in size, suggesting activation of protein degradation pathways. Large cells at the G1/S transition show hyperactivated levels of protein degradation, even higher than similarly sized or larger cells in S or G2, coinciding with the timing of the most stringent size control in animal cells. Together, these findings suggest that large cells maintain cell size homeostasis by activating global protein degradation to induce a compensatory slowdown of growth.


2017 ◽  
Author(s):  
Shixuan Liu ◽  
Miriam B. Ginzberg ◽  
Nish Patel ◽  
Marc Hild ◽  
Bosco Leung ◽  
...  

AbstractAnimal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.One-sentence summaryThe p38 MAP kinase pathway coordinates cell growth and cell cycle progression by lengthening G1 in small cells, allowing them more time to grow before their next division.


2012 ◽  
Vol 4 (3) ◽  
pp. 328 ◽  
Author(s):  
Yuan Tian ◽  
Chunxiong Luo ◽  
Yuheng Lu ◽  
Chao Tang ◽  
Qi Ouyang

Sign in / Sign up

Export Citation Format

Share Document