scholarly journals Large cells activate global protein degradation to maintain cell size homeostasis

2021 ◽  
Author(s):  
Shixuan Liu ◽  
Ceryl Tan ◽  
Chloe Melo-Gavin ◽  
Kevin G. Mark ◽  
Miriam Bracha Ginzberg ◽  
...  

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. This tight control of cell size involves both cell size checkpoints (e.g., delaying cell cycle progression for small cells) and size-dependent compensation in rates of mass accumulation (e.g., slowdown of cellular growth in large cells). We previously identified that the mammalian cell size checkpoint is mediated by a selective activation of the p38 MAPK pathway in small cells. However, mechanisms underlying the size-dependent compensation of cellular growth remain unknown. In this study, we quantified global rates of protein synthesis and degradation in naturally large and small cells, as well as in conditions that trigger a size-dependent compensation in cellular growth. Rates of protein synthesis increase proportionally with cell size in both perturbed and unperturbed conditions, as well as across cell cycle stages. Additionally, large cells exhibit elevated rates of global protein degradation and increased levels of activated proteasomes. Conditions that trigger a large-size-induced slowdown of cellular growth also promote proteasome-mediated global protein degradation, which initiates only after growth rate compensation occurs. Interestingly, the elevated rates of global protein degradation in large cells were disproportionately higher than the increase in size, suggesting activation of protein degradation pathways. Large cells at the G1/S transition show hyperactivated levels of protein degradation, even higher than similarly sized or larger cells in S or G2, coinciding with the timing of the most stringent size control in animal cells. Together, these findings suggest that large cells maintain cell size homeostasis by activating global protein degradation to induce a compensatory slowdown of growth.

2017 ◽  
Author(s):  
Shixuan Liu ◽  
Miriam B. Ginzberg ◽  
Nish Patel ◽  
Marc Hild ◽  
Bosco Leung ◽  
...  

AbstractAnimal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.One-sentence summaryThe p38 MAP kinase pathway coordinates cell growth and cell cycle progression by lengthening G1 in small cells, allowing them more time to grow before their next division.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Miriam Bracha Ginzberg ◽  
Nancy Chang ◽  
Heather D'Souza ◽  
Nish Patel ◽  
Ran Kafri ◽  
...  

Cell size uniformity in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether cellular growth rates depend on cell size, by monitoring how variance in size changes as cells grow. Our data revealed that, twice during the cell cycle, growth rates are selectively increased in small cells and reduced in large cells, ensuring cell size uniformity. This regulation was also observed directly by monitoring nuclear growth in live cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical/genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size. Additionally, although Rb signaling is not required for these regulatory behaviors, perturbing Cdk4 activity still influences cell size, suggesting that the Cdk4 pathway may play a role in designating the cell’s target size.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Shixuan Liu ◽  
Miriam Bracha Ginzberg ◽  
Nish Patel ◽  
Marc Hild ◽  
Bosco Leung ◽  
...  

Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.


2017 ◽  
Author(s):  
Miriam B. Ginzberg ◽  
Nancy Chang ◽  
Ran Kafri ◽  
Marc W. Kirschner

AbstractThe uniformity of cell size in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether growth rates of individual cells depend on cell size, by combining time-lapse microscopy and immunofluorescence to monitor how variance in cell size changes as cells grow. This analysis revealed two periods in the cell cycle when cell size variance decreases in a manner incompatible with unregulated growth, suggesting that cells sense their own size and adjust their growth rate to correct aberrations. Monitoring nuclear growth in live cells confirmed that these decreases in variance reflect a process that selectively inhibits the growth of large cells while accelerating growth of small cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical and genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size.


2004 ◽  
Vol 24 (24) ◽  
pp. 10802-10813 ◽  
Author(s):  
Brandt L. Schneider ◽  
Jian Zhang ◽  
J. Markwardt ◽  
George Tokiwa ◽  
Tom Volpe ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G1-phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.


2017 ◽  
Author(s):  
Corey A.H. Allard ◽  
Franziska Decker ◽  
Orion D. Weiner ◽  
Jared E. Toettcher ◽  
Brian R. Graziano

SUMMARYCell size drives key aspects of cell physiology, including organelle abundance [1, 2] and DNA ploidy [3]. While cells employ diverse strategies to regulate size [4–11], it is unclear how they are integrated to provide robust, systems-level control. In budding yeast, a molecular size sensor restricts passage of small cells through G1, enabling them to gain proportionally more volume than larger cells before progressing to Start [7, 12, 13]. Size control post-Start is less clear. S/G2/M duration in wildtype cells shows only a weak dependence on cell size; and since yeast exhibit exponential growth, larger cells would be expected to add more volume than smaller ones [7, 14–17]. However, even large mother cells produce smaller daughters, suggesting that additional regulation may occur during S/G2/M [7]. To gain further insight into post-Start size control, we prepared ‘giant’ yeast (>10-fold larger than typical volume) using two approaches to reversibly block cell cycle progression but not growth: optogenetic disruption of the cell polarity factor Bem1 [18, 19] and a temperature-sensitive cdk1 allele [20]. We reasoned that giant yeast would satisfy pre-Start size control while enabling us to uncover post-Start size-limiting mechanisms though the identification of invariant growth parameters. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. This behavior is consistent with a size-invariant ‘timer’ specifying the duration of S/G2/M and indicates that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.


2018 ◽  
Author(s):  
Maria Alcaide-Gavilán ◽  
Rafael Lucena ◽  
Katherine Schubert ◽  
Karen Artiles ◽  
Jessica Zapata ◽  
...  

ABSTRACTNutrient availability, growth rate and cell size are closely linked. For example, in budding yeast, the rate of cell growth is proportional to nutrient availability, cell size is proportional to growth rate, and growth rate is proportional to cell size. Thus, cells grow slowly in poor nutrients and are nearly half the size of cells growing in rich nutrients. Moreover, large cells grow faster than small cells. A signaling network that surrounds Tor kinase complex 2 (TORC2) plays an important role in enforcing these proportional relationships. Cells that lack components of the TORC2 network fail to modulate their growth rate or size in response to changes in nutrient availability. Here, we show that budding yeast homologs of the Lkb1 tumor suppressor kinase are required for normal modulation of TORC2 signaling and in response to changes in carbon source. Lkb1 kinases activate Snf1/AMPK to initiate transcription of genes required for utilization of poor carbon sources. However, Lkb1 influences TORC2 signaling via a novel pathway that is independent of Snf1/AMPK. Of the three Lkb1 homologs in budding yeast, Elm1 plays the most important role in modulating TORC2. Elm1 activates a pair of related kinases called Gin4 and Hsl1. Previous work found that loss of Gin4 and Hsl1 causes cells to undergo unrestrained growth during a prolonged mitotic arrest, which suggests that play a role in linking cell cycle progression to cell growth. We found that Gin4 and Hsl1 also control the TORC2 network. In addition, Gin4 and Hsl1 are themselves influenced by signals from the TORC2 network, consistent with previous work showing that the TORC2 network constitutes a feedback loop. Together, the data suggest a model in which the TORC2 network sets growth rate in response to carbon source, while also relaying signals via Gin4 and Hsl1 that set the critical amount of growth required for cell cycle progression. This kind of close linkage between control of cell growth and size would suggest a simple mechanistic explanation for the proportional relationship between cell size and growth rate.


Sign in / Sign up

Export Citation Format

Share Document