scholarly journals Dysfunctional HDL and atherosclerotic cardiovascular disease

2015 ◽  
Vol 13 (1) ◽  
pp. 48-60 ◽  
Author(s):  
Robert S. Rosenson ◽  
H. Bryan Brewer ◽  
Benjamin J. Ansell ◽  
Philip Barter ◽  
M. John Chapman ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 362 ◽  
Author(s):  
Fumiaki Ito ◽  
Tomoyuki Ito

Lipid markers are well-established predictors of vascular disease. The most frequently measured lipid markers are total cholesterol, high-density lipoprotein (HDL)-cholesterol (HDL-C), LDL cholesterol (LDL-C), and triglyceride. HDL reduces atherosclerosis by multiple mechanisms, leading to a reduced risk of cardiovascular disease, and HDL-C, as a metric of HDL quantity, is inversely associated with cardiovascular disease, independent of LDL-C. However, the quality of the HDL appears to be more important than its quantity, because HDL loses its antiatherogenic functions due to changes in its composition and becomes “dysfunctional HDL”. Although there is evidence of the existence of “dysfunctional HDL”, biomarkers for monitoring dysfunctional HDL in clinical practice have not yet been established. In this review, we propose a new lipid panel for the assessment of dysfunctional HDL and lipoprotein-related atherosclerotic cardiovascular disease. The lipid panel includes the measurement of lipid peroxide and triglyceride contents within HDL particles.


2018 ◽  
Vol 25 (13) ◽  
pp. 1480-1500 ◽  
Author(s):  
Sho-ichi Yamagishi ◽  
Takanori Matsui

Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the superfamily of serine protease inhibitors, serpins. It was first identified as a neuronal differentiating factor secreted by human retinal pigment epithelial cells, and then found to be the most potent inhibitor of pathological angiogenesis in mammalian eyes. Recently, PEDF has been shown not only to suppress oxidative stress and inflammatory reactions in vascular wall cells, T cells and macrophages, and adipocytes, but also to exert antithrombotic and anti-fibrotic properties, thereby protecting against the development and progression of various cardiometabolic diseases and related complications. Furthermore, accumulating evidence has suggested that circulating PEDF levels may be a biomarker of severity and prognosis of these devastating disorders. Number of subjects with visceral obesity and insulin resistance is increasing, and the metabolic syndrome and its related complications, such as diabetes, nonalcoholic fatty liver disease/non-alcoholic steatohepatits, and atherosclerotic cardiovascular disease are a growing health challenge. Therefore, in this study, we review the pathophysiological role of PEDF in obesity and metabolic disorders, cardiovascular disease, diabetic eye and kidney complications, liver diseases, and reproductive system disorders, and discuss the potential clinical utility of modulating the expression and actions of PEDF for preventing these cardiometabolic disorders. We also refer to the clinical value of PEDF as a biomarker in cardiometabolic complications.


Author(s):  
Christian S. Bork ◽  
Søren Lundbye-Christensen ◽  
Stine K. Venø ◽  
Anne N. Lasota ◽  
Erik B. Schmidt ◽  
...  

2021 ◽  
Vol 23 (5) ◽  
Author(s):  
Alison L. Bailey ◽  
Saif Al-Adwan ◽  
Eliea Sneij ◽  
Nicholas Campbell ◽  
Matthew E. Wiisanen

Sign in / Sign up

Export Citation Format

Share Document