Small non-coding RNAs in animal development

2008 ◽  
Vol 9 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Giovanni Stefani ◽  
Frank J. Slack
2016 ◽  
Author(s):  
Damian Kao ◽  
Alvina G. Lai ◽  
Evangelia Stamataki ◽  
Silvana Rosic ◽  
Nikolaos Konstantinides ◽  
...  

ABSTRACTThe amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion (“wood eating”), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Damian Kao ◽  
Alvina G Lai ◽  
Evangelia Stamataki ◽  
Silvana Rosic ◽  
Nikolaos Konstantinides ◽  
...  

The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.


2014 ◽  
Vol 226 (02) ◽  
Author(s):  
A van den Berg ◽  
M Tayari ◽  
G Kortman ◽  
J Sietzema ◽  
D de Jong ◽  
...  

2012 ◽  
Vol 153 (52) ◽  
pp. 2051-2059 ◽  
Author(s):  
Zsuzsanna Gaál ◽  
Éva Oláh

MicroRNAs are a class of small non-coding RNAs regulating gene expression at posttranscriptional level. Their target genes include numerous regulators of cell cycle, cell proliferation as well as apoptosis. Therefore, they are implicated in the initiation and progression of cancer, tissue invasion and metastasis formation as well. MicroRNA profiles supply much information about both the origin and the differentiation state of tumours. MicroRNAs also have a key role during haemopoiesis. An altered expression level of those have often been observed in different types of leukemia. There are successful attempts to apply microRNAs in the diagnosis and prognosis of acute lymphoblastic leukemia and acute myeloid leukemia. Measurement of the expression levels may help to predict the success of treatment with different kinds of chemotherapeutic drugs. MicroRNAs are also regarded as promising therapeutic targets, and can contribute to a more personalized therapeutic approach in haemato-oncologic patients. Orv. Hetil., 2012, 153, 2051–2059.


Sign in / Sign up

Export Citation Format

Share Document