scholarly journals Low-carbohydrate High-fat Diets: Regulation of Energy Balance and Body Weight Regain in Rats

Obesity ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Samantha J. Caton ◽  
Bai Yinglong ◽  
Lukas Burget ◽  
Lothar J. Spangler ◽  
Matthias H. Tschöp ◽  
...  
2012 ◽  
Vol 106 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Samantha J. Caton ◽  
Maximilian Bielohuby ◽  
Yinglong Bai ◽  
Lothar J. Spangler ◽  
Lukas Burget ◽  
...  

2011 ◽  
Vol 300 (1) ◽  
pp. E65-E76 ◽  
Author(s):  
Maximilian Bielohuby ◽  
Dominik Menhofer ◽  
Henriette Kirchner ◽  
Barbara J. M. Stoehr ◽  
Timo D. Müller ◽  
...  

Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only ( P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phospho enolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50–70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.


2010 ◽  
Vol 15 (4) ◽  
pp. 262-266 ◽  
Author(s):  
Won-Hee Choi ◽  
Ji-Yun Ahn ◽  
Sun-A Kim ◽  
Tae-Wan Kim ◽  
Tae-Youl Ha

2018 ◽  
Vol 118 (10) ◽  
pp. A126
Author(s):  
L. Ross ◽  
J. Musial ◽  
R. Hay ◽  
A. Cawte ◽  
D. McDermid ◽  
...  

2006 ◽  
Vol 2 (3) ◽  
pp. 136-140
Author(s):  
Vasundara Venkateswaran ◽  
Ahmed Q. Haddad ◽  
Laurence H. Klotz ◽  
Rob Nam ◽  
Neil E. Fleshner

1987 ◽  
Vol 117 (6) ◽  
pp. 1115-1120 ◽  
Author(s):  
Colleen K. Grogan ◽  
Hye-Kyung Kim ◽  
Dale R. Romsos

2014 ◽  
Vol 5 (3) ◽  
pp. 229-239 ◽  
Author(s):  
K. M. Platt ◽  
R. J. Charnigo ◽  
K. J. Pearson

Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10–11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10–11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Teuta Gjuladin-Hellon ◽  
Ian Davies ◽  
Jackie Fealey ◽  
Alexander Montasem ◽  
Katie Lane

AbstractOur recent study (1) showed that the amount of dietary carbohydrates in obesity interventions has differential effects on cardiovascular risk markers (CVM) and effects magnitude depends on intervention duration. Very-low carbohydrate high-fat diets (VLCD) were superior in ameliorating lipid markers compared to high-carbohydrate low-fat diets (LFD).We updated our systematic review and meta-analysis to include long-term effects of VLCD (< 50 g /day) on weight, glucose, total cholesterol, insulin and blood pressure (BP) among overweight/obese adults in comparison to LFD.Medline, PubMed, Cochrane Central, and CINAHLPlus were searched to identify large (n > 100) randomised controlled trials (RCT) with duration ≥ 6 months. Risk of bias, a random effects model and subgroup analyses based on duration of follow-up were performed using Review Manager. Results were reported according to PRISMA.Four open label RCT (n = 723; 362 VLCD; 361 LFD) with some form of behavioral intervention and duration 6–24 months were identified. VLCD showed more favorable effects on diastolic BP at 6 months (-1.96; 95%CI, -2.99 to 00.93; P = 0.0002) and 24 months (-2.69; 95%CI, -4.87 to -0.51; P = 0.001), near significant level at 12 months (-1.79; 95%CI, -3.56 to 0.04; P = 0.05) and an overall total favourable effect (-1.98; 95%CI, -2.73 to -1.22). The decrease in systolic BP was greater among VLCD for the whole period and the overall total effect reached the level of significance (-1.76; 95%CI, -3.56 to 0.04; P = 0.05). VLCD showed beneficial effect on total cholesterol level at 6 and 12 months (-0.01 mmol/L; 95%CI, -0.01 to –0.00; P = 0.002 and -0.01 mmol/L; 95%CI, -0.01 to –0.00; P = 0.005, respectively). The mean changes in weight, and fasting glucose and insulin levels revealed non-significant differences between both diets at any measured time, although these parameters decreased within both groups compared to baseline.VLCD led to significant total weighted mean decrease of diastolic BP and near significant decrease of systolic BP independent of changes in body weight, fasting glucose or insulin levels. The present data on decreased levels of diastolic BP and total cholesterol, combined with our recently published results on increased HDL-cholesterol, decreased triglycerides and no significant effect on LDL-cholesterol (1) provide evidence that VLCD are superior to LFD in improving traditional CVM in longer term.


1980 ◽  
Vol 94 (3) ◽  
pp. 321-326 ◽  
Author(s):  
Kazue Takano ◽  
Naomi Hizuka ◽  
Kazuo Shizume ◽  
Yoko Hasumi ◽  
Toshio Tsushima

Abstract. Serum somatomedin A was significantly reduced after 3 days of fasting in rats with a mean decrease of 23.6 ± 2.4% (N = 18) of initial values. Re-feeding for one day produced a definite increase in somatomedin A, with a rise in body weight. When re-fed isocalorically for 21 days with diets of different quality, a low protein diet led to smaller increases in both seum somatomedin A and body weight in comparison to those of control-, high-protein- and high fat-diets (P < 0.001). There is a positive correlation between the increase in body weight and serum somatomedin A levels (N = 70, r = 0.71, P< 0.001). The effect of growth hormone on somatomedin generation was abolished in hypophysectomized rats fed with low-protein diet. Our study suggests that protein in the diet is important for the generation of somatomedin A, which is necessary for normal growth.


Sign in / Sign up

Export Citation Format

Share Document