Eisenia bicyclis Inhibits Body Weight Gain and Fat Accumulation Induced by High-Fat Diets in Mice

2010 ◽  
Vol 15 (4) ◽  
pp. 262-266 ◽  
Author(s):  
Won-Hee Choi ◽  
Ji-Yun Ahn ◽  
Sun-A Kim ◽  
Tae-Wan Kim ◽  
Tae-Youl Ha
2018 ◽  
Vol 29 (5) ◽  
pp. 553-563 ◽  
Author(s):  
Shakthi R.K. Devan ◽  
Surendar Arumugam ◽  
Ganesh Shankar ◽  
Suresh Poosala

AbstractBackgroundThe prevalence of obesity is reported to be increasing owing to the high intake of dietary fat and is a predisposing risk factor with associated complex metabolic syndromes in the human population. Preclinical rodent models play a pivotal role in understanding the pathogenesis of obesity and development of new treatment strategies for humans. High-fat-diet (HFD)-induced rodents are used for chronic obesity models owing to their quick adaptation to high-fat diets and rapid body weight gain and different rats (Wistar Sprague-Dawley and Lewis) have been used by various researchers. However, the selection of appropriate stock contributes to the translation of clinically linked disease phenotypes to preclinical animal models.MethodsThe study was conducted using two commonly used rat stocks Hsd:Sprague-Dawley (SD) and Crl:Charles River (CD) to develop a chronic high-fat-diet-induced obesity model (DIO) to explore the underlying mechanisms of obesity and its utilization in drug discovery and development during preclinical stages. In addition two high-fat diets of different composition were evaluated (D12327; 40% kcal fat and D12492; 60% kcal fat) for their potential to induce obesity using these two stocks.ResultsA differential sensitivity to HFD was observed in body weight gain fat mass composition and obesity-linked symptoms such as impaired glucose tolerance insulin and leptin levels. The comparative research findings of Hsd:SD and Crl:CD rat stocks suggested that Crl:CD rats are more prone to diet-induced obesity and its associated complications.ConclusionsCrl:CD rats were found to be a suitable model for obesity over Hsd:SD when considering the important hallmarks of metabolic disorders that may be utilized for obesity-related research.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e540 ◽  
Author(s):  
Yumiko Yoshizaki ◽  
Chihiro Kawasaki ◽  
Kai-Chun Cheng ◽  
Miharu Ushikai ◽  
Haruka Amitani ◽  
...  

2007 ◽  
Vol 71 (1) ◽  
pp. 206-214 ◽  
Author(s):  
Fumiki AOKI ◽  
Shinichi HONDA ◽  
Hideyuki KISHIDA ◽  
Mitsuaki KITANO ◽  
Naoki ARAI ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33858 ◽  
Author(s):  
Amandine Everard ◽  
Lucie Geurts ◽  
Marie Van Roye ◽  
Nathalie M. Delzenne ◽  
Patrice D. Cani

2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


Sign in / Sign up

Export Citation Format

Share Document