scholarly journals Jak2 inhibition deactivates Lyn kinase through the SET–PP2A–SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients

Oncogene ◽  
2009 ◽  
Vol 28 (14) ◽  
pp. 1669-1681 ◽  
Author(s):  
A K Samanta ◽  
S N Chakraborty ◽  
Y Wang ◽  
H Kantarjian ◽  
X Sun ◽  
...  
Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 690-698 ◽  
Author(s):  
Nicholas J. Donato ◽  
Ji Yuan Wu ◽  
Jonathan Stapley ◽  
Gary Gallick ◽  
Hui Lin ◽  
...  

Clinical studies have shown that the tyrosine kinase inhibitor STI571 effectively controls BCR-ABL–positive chronic myelogenous leukemia (CML). However, disease progression while on STI571 therapy has been reported, suggesting de novo or intrinsic resistance to BCR-ABL–targeted therapy. To investigate possible mediators of acquired STI571 resistance, K562 cells resistant to 5 μM STI571 (K562-R) were cloned and compared to the parental cell population. K562-R cells had reduced BCR-ABL expression and limited activation of BCR-ABL signaling cascades (Stat 5, CrkL, MAPK). STI571 failed to activate caspase cascades or to suppress expression of survival genes (bcl-xL) in resistant cells. Gene sequencing and tyrosine kinase activity measurements demonstrated that K562-R cells retained wild-type and active BCR-ABL tyrosine kinase that was inhibitable by in vitro incubation with STI571, suggesting that BCR-ABL was not coupled to proliferation or survival of K562-R cells. The src-related kinase LYN was highly overexpressed and activated in K562-R cells, and its inhibition reduced proliferation and survival of K562-R cells while having limited effects of K562 cells. Specimens taken from patients with advanced CML that progressed on STI571 therapy also were analyzed for LYN kinase expression, and they were found to be elevated to a level similar to that of K562-R cells. Comparison of samples from patients taken prior to and following STI571 failure suggested that expression and/or activation of LYN/HCK occurs during disease progression. Together, these results suggest that acquired STI571 resistance may be associated with BCR-ABL independence and mediated in part through overexpression of other tyrosine kinases.


2013 ◽  
Vol 3 (9) ◽  
pp. e142-e142 ◽  
Author(s):  
S Chakraborty ◽  
Y-H Lin ◽  
X Leng ◽  
R N Miranda ◽  
L J Medeiros ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3342-3342
Author(s):  
Ajoy K. Samanta ◽  
Sandip Chakravorty ◽  
Yan Wang ◽  
Jorge Cortes ◽  
Hagop Kantarjian ◽  
...  

Abstract Chronic myelogenous leukemia (CML) patients treated with imatinib mesylate (IM) results in drug resistance in accelerated and blast crisis stages predominantly involving either mutation of the kinase domain of Bcr-Abl or increased expression of the Lyn tyrosine kinase, whose regulation by Bcr-Abl is not yet understood. Treatment of CML patients with IM can at times cause a decline in levels of wild-type Bcr-Abl protein followed in some cases by activation of Lyn/Hck tyrosine kinases. Lyn is reported to be involved in Bcr-Abl signaling pathway and the Bcr-Abl oncoprotein activates Lyn. Although increased expression of Lyn with the progression of the disease is known and Lyn is involved in the survival of CML cells, its exact position in the Bcr-Abl driven signal transduction pathway, its down-stream targets, its regulation by upstream regulators and the mechanism of continuous activation of Lyn in accelerated and blast crisis stages of CML are still unclear. Our previous reports suggested that Bcr-Abl activates the Jak2 tyrosine kinase, by phosphorylation of the Tyr 1007 which involves the enhanced expression of c-Myc. Recently, we have shown that Jak2 and the Bcr-Abl tyrosine kinase are part of a large Network of signaling proteins (Samanta et al Cancer Research, 2006). Here we report that inhibition of Jak2, a target of Bcr-Abl, by either Jak2-specific siRNA or by the Jak2 inhibitor II (1,2,3,4,5,6-hexabromocyclohexan, Sandberg. et al J.Med. Chem. 2005) or AG490 reduced the level of activated Lyn, pGab2 (YxxM), pAkt, pGSK3 and c-Myc. Inhibition of Lyn by knocking down by Lyn specific siRNA or by Lyn inhibitor resulted the similar results further supporting that Lyn is a downstream target of Jak2. We further explored the possible regulatory mechanism of Lyn by Jak2. Jak2 inhibition decreased the level of the SET protein, which strongly inhibits activity of PP2A. Activation of PP2A combined with Jak2 inhibition enhanced the reduction of activated Lyn compared to Jak2 inhibition alone in BCR-ABL+ cells. In contrast suppression of both PP2A and the tyrosine phosphatase Shp1 interfered with the loss of activated Lyn kinase caused by Jak2 inhibition, indicating the involvement of PP2A and Shp1 in the inactivation of the Lyn kinase by Jak2 inhibition. Inhibition of either Jak2 or Lyn kinase induced apoptosis in BCR-ABL+ cell lines, including imatinib-resistant (IM) T315I Bcr-Abl+ cells. Jak2 inhibition induced apoptosis in CML patient cells accelerated and blast crisis stages but not normal cells including cells resistant to IM. In conclusion, our findings indicate that Lyn is downstream of Jak2 and is regulated by Jak2 in Bcr-Abl+ cells. We have shown that activated Jak2 prevents the dephosphorylation of Tyr 396 of Lyn (the active form of Lyn) in Bcr-Abl+ cells through a SET-dependent inactivation of the PP2A tumor suppressor/Shp1 pathway. Our studies in Bcr-Abl driven CML cells indicate that therapeutic strategies to inhibit Jak2 and its downstream target Lyn may be a powerful approaches for the management of IM-resistant CML specifically T315I where the dual kinase inhibitor -dasatanib fails to kill CML cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2094-2094 ◽  
Author(s):  
Aleksandar Radujkovic ◽  
Moritz Schad ◽  
Julian Topaly ◽  
Stephanie Laufs ◽  
Anna Jauch ◽  
...  

Abstract Chronic myelogenous leukemia (CML) has gained outstanding importance for targeted cancer therapy. Inhibition of the BCR-ABL tyrosine kinase by imatinib (STI571, Glivec, Gleevec) leads to reduced proliferation of CML cells in vitro and sustained hematological and cytogenetic responses in vivo. However, resistance has been observed after variable periods of imatinib monotherapy especially in advanced stages of disease and overexpression of the BCR-ABL protein is one of the mechanisms of imatinib resistance. As combination therapy may allow to overcome drug resistance, we were interested in the effect of combination treatment with imatinib and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of the heat shock protein 90 (Hsp90) chaperone complex. Furthermore, a new mechanism of action of the heat Hsp90 inhibitor 17-AAG is brought to light giving implications for an additional benefit of a combination treatment of imatinb-resistant chronic myelogenous leukemia. In imatinib-sensitive CML cell lines, combination index values (CI) obtained using the method of Chou and Talalay indicated additive (CI = 1) or slightly antagonistic (CI > 1) effects following simultaneous treatment with imatinib and 17-AAG. In contrast, the agents acted synergistically in imatinib-resistant BCR-ABL overexpressing LAMA84-R cells (CI = 0.6 at 75 % growth inhibition level). Growth inhibition of CFU-GM colonies of primary CML cells obtained from 3 patients is stronger after combination treatment than after monotherapy and annexin V / propidium iodide staining showed a strong increase of the apoptotic cell fraction in CML cells treated for 48 hrs by the combination treatment as compared to treatment with each drug alone. In imatinib-resistant cells BCR-ABL mRNA levels and protein expression were increased compared to the imatinib-sensitive parental cell line which is consistent to our cytogenetic and multicolor FISH analyses revealing multiple genomic BCR-ABL copies in imatinib-resistant cells. Furthermore, in imatinib-resistant cells P-glycoprotein activity was increased. Single treatment with 17-AAG lowered BCR-ABL and increased Hsp70 protein levels in both cell lines as expected whereas combination treatment was even more effective in this respect. Interestingly, single treatment with 17-AAG also decreased P-glycoprotein activity in a dose-dependent fashion as confirmed by a rhodamine-123 exclusion assay. The synergistic effect of both drugs in imatinib-resistant cells may thus be explained by increased intracellular levels of imatinib following 17-AAG treatment. The relevance of this additional mechanism warrants further exploration in clinical studies.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3821-3829 ◽  
Author(s):  
Ji Wu ◽  
Feng Meng ◽  
Henry Lu ◽  
Ling Kong ◽  
William Bornmann ◽  
...  

Abstract Lyn kinase functions as a regulator of imatinib sensitivity in chronic myelogenous leukemia (CML) cells through an unknown mechanism. In patients who fail imatinib therapy but have no detectable BCR-ABL kinase mutation, we detected persistently activated Lyn kinase. In imatinib-resistant CML cells and patients, Lyn activation is BCR-ABL independent, it is complexed with the Gab2 and c-Cbl adapter/scaffold proteins, and it mediates persistent Gab2 and BCR-ABL tyrosine phosphorylation in the presence or absence of imatinib. Lyn silencing or inhibition is necessary to suppress Gab2 and BCR-ABL phosphorylation and to recover imatinib activity. Lyn also negatively regulates c-Cbl stability, whereas c-Cbl tyrosine phosphorylation is mediated by BCR-ABL. These results suggest that Lyn exists as a component of the BCR-ABL signaling complex and, in cells with high Lyn expression or activation, BCR-ABL kinase inhibition alone (imatinib) is not sufficient to fully disengage BCR-ABL–mediated signaling and suggests that BCR-ABL and Lyn kinase inhibition are needed to prevent or treat this form of imatinib resistance.


2011 ◽  
Vol 2 (2) ◽  
pp. 67
Author(s):  
Camillo Porta ◽  
Federica Tagliani

Imatinib mesylate, a small-molecule inhibitor of BCRABL tyrosine kinase activity, has emerged as the well-recognized standard of treatment for chronic myelogenous leukemia (CML). Indeed, both its efficacy, tolerability, as well as cost-effectiveness have been clearly proven...


2011 ◽  
pp. 67-68
Author(s):  
Camillo Porta ◽  
Federica Tagliani

Imatinib mesylate, a small-molecule inhibitor of BCRABL tyrosine kinase activity, has emerged as the well-recognized standard of treatment for chronic myelogenous leukemia (CML). Indeed, both its efficacy, tolerability, as well as cost-effectiveness have been clearly proven...


2016 ◽  
Vol 7 (5-6) ◽  
pp. 201-208 ◽  
Author(s):  
Sandip N. Chakraborty ◽  
Xiaohong Leng ◽  
Bastianella Perazzona ◽  
Xiaoping Sun ◽  
Yu-Hsi Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document