scholarly journals Oncogenic E3 ubiquitin ligase NEDD4 binds to KLF8 and regulates the microRNA-132/NRF2 axis in bladder cancer

Author(s):  
Minghuan Mao ◽  
Liang Yang ◽  
Jingyao Hu ◽  
Bing Liu ◽  
Xiling Zhang ◽  
...  

AbstractThe neuronally expressed developmentally downregulated 4 (NEDD4) gene encodes a ubiquitin ligase that targets the epithelial sodium channel for degradation and has been implicated in tumor growth in various cancers. Hence, in this study, we intended to characterize the functional relevance of the NEDD4-mediated Kruppel-like factor 8/microRNA-132/nuclear factor E2-related factor 2 (KLF8/miR-132/NRF2) axis in the development of bladder cancer. NEDD4 and KLF8 were overexpressed in bladder cancer tissues and were associated with poorer patient survival rates. In bladder cancer cells, NEDD4 intensified the stability and transcriptional activity of KLF8 through ubiquitination to augment cell viability and migratory ability. Our investigations revealed that NEDD4 promotes the binding of KLF8 to the miR-132 promoter region and inhibits the expression of miR-132. KLF8 inhibited the expression of miR-132 to augment the viability and migratory ability of bladder cancer cells. Furthermore, miR-132 downregulated the expression of NRF2 to restrict the viability and migratory ability of bladder cancer cells. In addition, in vivo findings verified that NEDD4 regulates the KLF8/miR-132/NRF2 axis by accelerating tumor growth and lung metastasis. In conclusion, this study highlights NEDD4 as a potential therapeutic target against tumor recurrence and metastasis in bladder cancer.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e17035-e17035
Author(s):  
Bernhard Kiss ◽  
Anne Kathrin Volkmer ◽  
Dongdong Feng ◽  
Kelly Marie McKenna ◽  
Shirley Mihardja ◽  
...  

e17035 Background: CD47 is an antiphagocytic signal and macrophage checkpoint that bladder and other cancer cells over-express to evade innate immunity. Magrolimab (Hu5F9-G4) a CD47 blocking antibody, promotes phagocytosis of cancer cells by macrophages and is being tested in several clinical trials (NCT02953509, NCT03248479, NCT02953782, NCT03558139). Chemotherapies synergize with magrolimab by increasing “eat me” signals on cancer cells, and thus enhancing phagocytosis. This synergy has been shown in MDS and AML, whereby magrolimab+azacitidine has shown encouraging efficacy in pre-clinical and clinical studies. This study aimed to investigate the effect of magrolimab as monotherapy and in combination with gemcitabine-cisplatin chemotherapy in bladder cancer. Methods: Phagocytosis of urothelial bladder cancer cells (639V) was evaluated in vitro with magrolimab alone and in combination with chemotherapy (gemcitabine + cisplatin). Treatment in vivo was evaluated in a xenograft mouse model. 639V cells were transplanted into NSG mice and upon confirmation of engraftment mice were randomized into 4 treatment cohorts: control (PBS), magrolimab, chemotherapy (cisplatin + gemcitabine), and magrolimab in combination with chemotherapy. In the first experimental setup treatment was started early in small tumors and in the second experimental setup treatment was started late after tumors have grown to large size. Tumor growth was monitored by in vivo bioluminescent imaging. Metastases were evaluated postmortem. Results: Chemotherapy increased calreticulin on bladder cancer cells. Magrolimab enhanced phagocytosis of bladder cancer cells in vitro and combination of magrolimab with chemotherapy further increased phagocytosis compared to either therapy alone. Magrolimab and chemotherapy, each alone decreased tumor growth in vivo but only combination of magrolimab with chemotherapy showed a strong inhibition of tumor growth, resulting in a significantly prolonged survival compared to all other treatment cohorts. This was shown for both, small tumors and large tumors. Metastases formation in liver and lungs was completely inhibited by treatment with magrolimab, whereas mice treated with chemotherapy alone or PBS control showed metastases in these organs. Conclusions: Magrolimab treatment in combination with chemotherapy was efficacious in preclinical in vitro and in vivo studies in bladder cancer and provides a novel treatment opportunity for patients with bladder cancer and other solid tumors.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 993
Author(s):  
Leanne Ambrosio ◽  
Monica Argenziano ◽  
Marie Angèle Cucci ◽  
Margherita Grattarola ◽  
Inge A.M. de Graaf ◽  
...  

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the master regulator of antioxidant and cytoprotective gene expressions. Moreover, it plays a pivotal role in cancer progression. Nrf2 mediates the adaptive response which contributes to the resistance to chemotherapeutic pro-oxidant drugs, such as cisplatin (CDDP), in various tumors, including bladder cancers. For this reason, Nrf2 could be a promising target to overcome chemoresistance. There are several known Nrf2 pharmacological inhibitors; however, most of them are not specific. The use of a specific small interfering RNA (siRNA) targeting the Nrf2 gene (siNrf2) loaded into nanovehicles is an attractive alternative, since it can increase specificity. This study aimed to evaluate the biological activity of siNrf2 loaded on guanidine-terminated carbosilane dendrimers (GCDs) in overcoming CDDP resistance in bladder cancer cells with a high level of Nrf2. Parameters such as viability, proliferation, apoptosis, migration, and oxidative stress level were taken into account. Results demonstrated that siNrf2-GCD treatment sensitized CDDP-resistant cells to CDDP treatment. Moreover, data obtained by treating the non-cancerous human kidney HK-2 cell line strongly suggest a good safety profile of the carbosilane dendrimers loaded with siNrf2. In conclusion, we suggest that siNrf2-GCD is a promising drug delivery system for gene therapy to be used in vivo; and it may represent an important tool in the therapy of CDDP-resistant cancer.


2015 ◽  
Vol 761 ◽  
pp. 309-320 ◽  
Author(s):  
Sheau-Yun Yuan ◽  
Chen-Li Cheng ◽  
Hao-Chung Ho ◽  
Shian-Shiang Wang ◽  
Kun-Yuan Chiu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3271
Author(s):  
Nada Oršolić ◽  
Dyana Odeh ◽  
Maja Jazvinšćak Jembrek ◽  
Jelena Knežević ◽  
Darko Kučan

Quercetin (QU), a hyperthermic sensitizer, when combined with cisplatin (CP) affects tumor growth. To determine the effects of QU and CP and their interactions, multimodal treatment in vitro and in vivo models under physiological and hyperthermic conditions was performed. In vitro, different sensitivity of T24 and UMUC human bladder cancer cells was observed after short-term exposure to QU (2 h) and CP (1 h). Effects of both compounds were investigated at low and high micromolar concentrations (1 and 50 µM, respectively) under both thermal conditions. QU acted in additive or synergistic manner in combination with CP between physiological condition and hyperthermia. As determined by 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, short-term application of QU and CP reduced cell viability. Clonal assay also indicated that combined treatment with QU and CP is lethal to bladder cancer cells in both conditions. In vivo, CP (5 or 10 mg kg−1) and QU (50 mg kg−1) acted synergistically with hyperthermia (43 °C) and inhibited tumor growth, activated immune effectors and increased mice survival. Our results demonstrate that combined treatment with CP and QU may increase death of tumor cells in physiological and hyperthermic conditions which could be clinically relevant in locoregional chemotherapy.


2004 ◽  
Vol 172 (4 Part 1) ◽  
pp. 1474-1479 ◽  
Author(s):  
YOICHI MIZUTANI ◽  
HIROYUKI NAKANISHI ◽  
YONG NAN LI ◽  
NODOKA SATO ◽  
AKIHIRO KAWAUCHI ◽  
...  

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chin-Hui Lai ◽  
Kexin Xu ◽  
Jianhua Zhou ◽  
Mingrui Wang ◽  
Weiyu Zhang ◽  
...  

AbstractBladder cancer is one of the most commonly diagnosed malignant tumors in the urinary system and causes a massive cancer-related death. DEPDC1B is a DEP domain-containing protein that has been found to be associated with a variety of human cancers. This study aimed to explore the role and mechanism of DEPDC1B in the development of bladder cancer. The analysis of clinical specimens revealed the upregulated expression of DEPDC1B in bladder cancer, which was positively related to tumor grade. In vitro and in vivo studies showed that DEPDC1B knockdown could inhibit the growth of bladder cancer cells or xenografts in mice. The suppression of bladder cancer by DEPDC1B was executed through inhibiting cell proliferation, cell migration, and promoting cell apoptosis. Moreover, a mechanistic study found that SHC1 may be an important route through which DEPDC1B regulates the development of bladder cancer. Knockdown of SHC1 in DEPDC1B-overexpressed cancer cells could abolish the promotion effects induced by DEPDC1B. In conclusion, DEPDC1B was identified as a key regulator in the development of bladder cancer, which may be used as a potential therapeutic target in the treatment of bladder cancer.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 813-820
Author(s):  
Odrun A. Gederaas ◽  
Harald Husebye ◽  
Anders Johnsson ◽  
Susan Callaghan ◽  
Anders Brunsvik

Aminolevulinic acid and hexyl-aminolevulinate serve as biological precursors to produce photosensitive porphyrins in cells via the heme biosynthetic pathway. This pathway is integral to porphyrin-based photodynamic diagnosis and therapy. By adding exogenous hexyl-aminolevulinate to rat bladder cancer cells (AY27, in vitro) and an animal bladder cancer model (in vivo), fluorescent endogenous porphyrin production was stimulated. Lipophilic protoporphyrin IX was identified as the dominant species by reverse high-pressure liquid chromatography. Subcellular porphyrin localization in the AY27 cells was evaluated by confocal laser scanning microscopy and showed almost quantitative bleaching after 20 s. From this study, we ascertained that the protocol described herein is suitable for hexyl-aminolevulinate-mediated photodynamic therapy and diagnosis when protoporphyrin IX is the active agent.


2013 ◽  
Vol 14 (12) ◽  
pp. 24603-24618 ◽  
Author(s):  
Tao Zhang ◽  
Peng Guo ◽  
Yinan Zhang ◽  
Hui Xiong ◽  
Xiao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document