Post-exercise hypotension time-course is influenced by exercise intensity: a randomised trial comparing moderate-intensity, high-intensity, and sprint exercise

Author(s):  
Matthew D. Jones ◽  
Muhammad Munir ◽  
Anna Wilkonski ◽  
Kelly Ng ◽  
Guy Beynon ◽  
...  
2019 ◽  
Vol 119 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Flávia C. Pimenta ◽  
Fábio Tanil Montrezol ◽  
Victor Zuniga Dourado ◽  
Luís Fernando Marcelino da Silva ◽  
Gabriela Alves Borba ◽  
...  

2002 ◽  
Vol 12 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Nicolette C. Bishop ◽  
Michael Gleeson ◽  
Ceri W. Nicholas ◽  
Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.


2021 ◽  
Vol 40 (10) ◽  
pp. 797-799
Author(s):  
Raphael José Perrier-Melo ◽  
Antônio Henrique Germano-Soares ◽  
Aline Freitas Brito ◽  
Iago Vilela Dantas ◽  
Manoel da Cunha Costa

2018 ◽  
Vol 40 (01) ◽  
pp. 16-22 ◽  
Author(s):  
Alberto Pérez-López ◽  
Marcos Martin-Rincon ◽  
Alfredo Santana ◽  
Ismael Perez-Suarez ◽  
Cecilia Dorado ◽  
...  

AbstractInterleukin (IL)-15 stimulates mitochondrial biogenesis, fat oxidation, glucose uptake and myogenesis in skeletal muscle. However, the mechanisms by which exercise triggers IL-15 expression remain to be elucidated in humans. This study aimed at determining whether high-intensity exercise and exercise-induced RONS stimulate IL-15/IL-15Rα expression and its signaling pathway (STAT3) in human skeletal muscle. Nine volunteers performed a 30-s Wingate test in normoxia and hypoxia (PIO2=75 mmHg), 2 h after placebo or antioxidant administration (α-lipoic acid, vitamin C and E) in a randomized double-blind design. Blood samples and muscle biopsies (vastus lateralis) were obtained before, immediately after, and 30 and 120 min post-exercise. Sprint exercise upregulated skeletal muscle IL-15 protein expression (ANOVA, P=0.05), an effect accentuated by antioxidant administration in hypoxia (ANOVA, P=0.022). In antioxidant conditions, the increased IL-15 expression at 120 min post-exercise (33%; P=0.017) was associated with the oxygen deficit caused by the sprint (r=–0.54; P=0.020); while, IL-15 and Tyr705-STAT3 AUCs were also related (r=0.50; P=0.036). Antioxidant administration promotes IL-15 protein expression in human skeletal muscle after sprint exercise, particularly in severe acute hypoxia. Therefore, during intense muscle contraction, a reduced PO2 and glycolytic rate, and possibly, an attenuated RONS generation may facilitate IL-15 production, accompanied by STAT3 activation, in a process that does not require AMPK phosphorylation.


2020 ◽  
Vol 106 (1) ◽  
pp. e83-e93
Author(s):  
Vinutha B Shetty ◽  
Paul A Fournier ◽  
Nirubasini Paramalingam ◽  
Wayne Soon ◽  
Heather C Roby ◽  
...  

Abstract Context Under basal insulin levels, there is an inverted U relationship between exercise intensity and exogenous glucose requirements to maintain stable blood glucose levels in type 1 diabetes (T1D), with no glucose required for intense exercise (80% V̇O2 peak), implying that high-intensity exercise is not conducive to hypoglycemia. Objective This work aimed to test the hypothesis that a similar inverted U relationship exists under hyperinsulinemic conditions, with high-intensity aerobic exercise not being conducive to hypoglycemia. Methods Nine young adults with T1D (mean ± SD age, 22.6 ± 4.7 years; glycated hemoglobin, 61 ± 14 mmol/mol; body mass index, 24.0 ± 3.3 kg/m2, V̇O2 peak, 36.6 ± 8.0 mL·kg–1 min–1) underwent a hyperinsulinemic-euglycemic clamp to maintain stable glycemia (5-6 mmol·L−1), and exercised for 40 minutes at 4 intensities (35%, 50%, 65%, and 80% V̇O2peak) on separate days following a randomized counterbalanced study design. Main Outcome Measures Glucose infusion rates (GIR) and glucoregulatory hormones levels were measured. Results The GIR (± SEM) to maintain euglycemia was 4.4 ± 0.4 mg·kg–1 min–1 prior to exercise, and increased significantly by 1.8 ± 0.4, 3.0 ± 0.4, 4.2 ± 0.7, and 3.5 ± 0.7 mg·kg–1 min–1 during exercise at 35%, 50%, 65%, and 80% V̇O2 peak, respectively, with no significant differences between the 2 highest exercise intensities (P &gt; .05), despite differences in catecholamine levels (P &lt; .05). During the 2-hour period after exercise at 65% and 80% V̇O2 peak, GIRs did not differ from those during exercise (P &gt; .05). Conclusions Under hyperinsulinemic conditions, the exogenous glucose requirements to maintain stable glycemia during and after exercise increase with exercise intensity then plateau with exercise performed at above moderate intensity ( &gt; 65% V̇O2 peak). High-intensity exercise confers no protection against hypoglycemia.


2013 ◽  
Vol 114 (11) ◽  
pp. 1550-1562 ◽  
Author(s):  
Alexandra M. Williams ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

During step transitions in work rate (WR) within the moderate-intensity (MOD) exercise domain, pulmonary O2 uptake (V̇o2p) kinetics are slowed, and V̇o2p gain (ΔV̇o2p/ΔWR) is greater when exercise is initiated from an elevated metabolic rate. High-intensity interval training (HIT) has been shown to speed V̇o2p kinetics when step transitions to MOD exercise are initiated from light-intensity baseline metabolic rates. The effects of HIT on step transitions initiated from elevated metabolic rates have not been established. Therefore, this study investigated the effects of HIT on V̇o2p kinetics during transitions from low and elevated metabolic rates, within the MOD domain. Eight young, untrained men completed 12 sessions of HIT (spanning 4 wk). HIT consisted of 8–12 1-min intervals, cycling at a WR corresponding to 110% of pretraining maximal WR (WRmax). Pre-, mid- and posttraining, subjects completed a ramp-incremental test to determine maximum O2 uptake, WRmax, and estimated lactate threshold (θ̂L). Participants additionally completed double-step constant-load tests, consisting of step transitions from 20 W → Δ45% θ̂L [lower step (LS)] and Δ45 → 90% θ̂L [upper step (US)]. HIT led to increases in maximum O2 uptake ( P < 0.05) and WRmax ( P < 0.01), and τV̇o2p of both lower and upper MOD step transitions were reduced by ∼40% (LS: 24 s → 15 s; US: 45 s → 25 s) ( P < 0.01). However, the time course of adjustment of local muscle deoxygenation was unchanged in the LS and US. These results suggest that speeding of V̇o2p kinetics in both the LS and US may be due, in part, to an improved matching of muscle O2 utilization to microvascular O2 delivery within the working muscle following 12 sessions of HIT, although muscle metabolic adaptations cannot be discounted.


2010 ◽  
Vol 160 (3) ◽  
pp. 513-520 ◽  
Author(s):  
John D. Eicher ◽  
Carl M. Maresh ◽  
Gregory J. Tsongalis ◽  
Paul D. Thompson ◽  
Linda S. Pescatello

Sign in / Sign up

Export Citation Format

Share Document