scholarly journals On-chip structure-switching aptamer-modified magnetic nanobeads for the continuous monitoring of interferon-gamma ex vivo

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Guozhen Liu ◽  
Chaomin Cao ◽  
Shengnan Ni ◽  
Shilun Feng ◽  
Hui Wei
2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Harini Ganeshan ◽  
Kwadwo A. Kusi ◽  
Dorothy Anum ◽  
Michael R. Hollingdale ◽  
Bjoern Peters ◽  
...  

2020 ◽  
Vol 26 (3) ◽  
pp. 179-192 ◽  
Author(s):  
Swati Sharma ◽  
Bastien Venzac ◽  
Thomas Burgers ◽  
Séverine Le Gac ◽  
Stefan Schlatt

Abstract The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.


The Analyst ◽  
2013 ◽  
Vol 138 (22) ◽  
pp. 6811 ◽  
Author(s):  
Li Pan ◽  
Yong Huang ◽  
Changchun Wen ◽  
Shulin Zhao

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


2017 ◽  
Vol 19 (1) ◽  
Author(s):  
Sung Soo Ahn ◽  
Eun Seong Park ◽  
Joo Sung Shim ◽  
Sang-Jun Ha ◽  
Beom Seok Kim ◽  
...  

Lab on a Chip ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 312-325 ◽  
Author(s):  
M. Astolfi ◽  
B. Péant ◽  
M. A. Lateef ◽  
N. Rousset ◽  
J. Kendall-Dupont ◽  
...  

Micro-dissected tumor tissues (MDTs) are maintained alive on chip for several days and show promising results for personalized medicine applications.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1536-1536
Author(s):  
Linda M. Pilarski ◽  
Govindkrishna V. Kaigala ◽  
Jaron VanDjiken ◽  
Alexey Atrazhev ◽  
Brian J. Taylor ◽  
...  

Abstract Integrated microfluidic chips offer fast, inexpensive and sensitive detection of molecular characteristics of cancer. PCR was performed using a hybrid polymer/glass chip comprising of wells and channels moulded in polydimethyl siloxane (PDMS) using photolithographic procedures and bonded to glass by a simple rapid prototyping procedure. Fluidic flow was performed by a microprocessor with an in-house built intelligent system for a fully reusable, scalable valving and pumping operation. We successfully performed on-chip PCR with 2 ul of template/PCR mix. Multiple Myeloma (MM) is characterized by a distinct immunoglobulin gene rearrangements, and by IgH translocations that enable unequivocal identification of the MM clone. To detect these molecular signatures, PCR was performed in the central enclosed chamber of a 3-well PCR chip (the other two being the loading and the unloading open wells) using fluorescent-tagged primers, operated using miniaturized user controlled instrumentation. After PCR amplification, product was detected by fragment analysis on a glass capillary electrophoresis (CE) chip using 50–250pl of the amplified product, performed in about 2 minutes. Unlike PCR using plasmid templates, successful PCR using nucleic acid from patient cells required passivation of the PDMS and glass inner surfaces to minimize adsorption of PCR components, and the use of approximately 1–2ng of cDNA template. Amplified products were run through a polymer filled separation channel with size standards to confirm the product size. For two MM patients, using the CE chip, both genomic DNA and IgH VDJ transcripts amplified from individual cells are detectable on-chip with as little as 0.001% of the product (50pL) amplified from one individual MM cell or from groups of MM cells. IgH VDJ product was detectable on the CE chip after a single stage conventional PCR of 30 cycles to amplify genomic DNA from 100 ex-vivo MM cells (100 copies of template). For detection of the single rearranged copy of IgH VDJ in genomic DNA from individual MM cells, a nested PCR strategy was required to amplify sufficient product for detection using either on chip CE or the ABI3100. Compared to analysis on the ABI3100, the gold standard technology, the chip provided approximately 20 fold greater sensitivity for detecting fluorescent product. To further test the microfluidic system, we amplified cDNA from ex-vivo MM cells having the t(4;14)+ translocation to detect hybrid transcripts (IgH-MMSET) on-chip. Cells from MM patients having either the MB4-1 or MB4-3 breakpoint were amplified using the PDMS/glass hybrid chip, and products of the appropriate size were detected using either conventional or on-chip CE. Finally, PCR was performed on an integrated chip that seamlessly incorporates both the PCR and the CE components as a single unit with minimal manual intervention, aiming towards higher levels of on-chip integration. Work is in progress to implement sample processing and cell selection on-chip. This work forecasts automated cost-effective devices able to analyze genetic information in minutes. Real-time detection of complex genetic abnormalities will allow sensitive detection of emerging aggressive variants as disease progresses. This will enable custom tailored therapies that target the genetic vulnerabilities of the malignant clone in each individual patient.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3402-3402
Author(s):  
Carina S. Debes Marun ◽  
Vincent Sieben ◽  
Patrick M. Pilarski ◽  
Tony Reiman ◽  
Andrew R. Belch ◽  
...  

Abstract Interphase fluorescence in situ hybridization (FISH) is widely used as a diagnostic tool for known genetic abnormalities due to its sensitivity for detection of cryptic aberrations, such as t(4;14)(p16;q32) in multiple myeloma (MM). In many cancers, chromosomal abnormalities are prognostic indicators that also predict response to therapy. Tests to determine the type and extent of these abnormalities are increasingly essential for more informed diagnosis and choice of treatment strategies. However the cost and complexity of the current FISH protocols, and the variability arising from differences in technical approach and subjective evaluation of hybridization patterns has compromised its widespread utilization. To create a standardized platform that will be accurate, robust, cost-effective and easy to use in any clinical setting, we have developed a microfluidic platform that enables simultaneous assessment of 10 chromosomal abnormalities or 10 patients, on a single chip. Microfluidic chips are hybrid polymer/glass microsystems with miniaturized networks of wells and channels, incorporating valves, heaters and fluidic control. The 10 channel microfluidic chip used here is the size of a microscope slide. Each channel requires only 1/10 the amount of probe used in conventional FISH, thus substantially reducing the cost per test. All the probes tested gave comparable results to conventional testing. Three cell lines and three ex-vivo PBMC samples from MM patients were tested against four different chromosomal probe sets, to detect translocation (4:14), any 14q32 translocation, deletion of chromosome 13 or deletion of p53. We used a mixture of patient sample and cell line to test the robustness of our technology and were able to successfully distinguish abnormal patterns with percentages that were comparable to FISH on microscope slides. On-chip FISH was highly reliable with consistent results in multiple test runs. To automate the process of reading slide, a computer vision algorithm was developed to provide a quantitative and objective measure of staining patterns, and to eventually eliminate the requirement for human intervention. This strategy uses artificial intelligence to distinguish probe from background staining, to identify and quantify the number of cells with different chromosomal patterns. This visual processing algorithm has been validated against human interpretation and provides a sensitive and unbiased method to distinguish signal and noise within stained cells. Although reliable and reproducible hybridization occurred in as little as four hours, to further reduce the time required for FISH testing, methods to enhance the hybridization were examined. These included chip designs that implemented mechanical or electrokinetic pumping. Both methods improved the hybridization and are currently being optimized. On-chip FISH appears to be versatile, fast and inexpensive, making fully automated FISH testing a possibility. Compared to conventional methods, these first iterations of on-chip FISH provide a 10-fold higher throughput and a 10 fold reduction in the cost of testing. On-chip FISH technology holds promise for sophisticated and cost-effective screening of cancer patients at every clinic visit in any health care setting, thus facilitating the delivery of personalized cancer care targeted to the genetic characteristics of each individual. Funded by CIHR, NSERC and Western Economic Diversification.


Lab on a Chip ◽  
2012 ◽  
Vol 12 (13) ◽  
pp. 2385 ◽  
Author(s):  
Seung Ah Lee ◽  
Guoan Zheng ◽  
Nandini Mukherjee ◽  
Changhuei Yang

Sign in / Sign up

Export Citation Format

Share Document