scholarly journals On-chip continuous monitoring of motile microorganisms on an ePetri platform

Lab on a Chip ◽  
2012 ◽  
Vol 12 (13) ◽  
pp. 2385 ◽  
Author(s):  
Seung Ah Lee ◽  
Guoan Zheng ◽  
Nandini Mukherjee ◽  
Changhuei Yang
2020 ◽  
Vol 61 (1) ◽  
pp. 43-49
Author(s):  
G. N. Doku ◽  
W. K. Agbozo ◽  
S. J. Haswell ◽  
T. McCreedy

Phosphate detection in the environment (especially, water bodies) is very essential in view of its consequent pollution effects on eutrophication. Continuous monitoring of phosphate concentration (and phosphorus compounds in general) in water samples has been based on phosphomolybdenum blue formation coupled with spectrophotometric detection. Continu­ous flow injection analyses (FIA) are well known to present numerous advantages over batch methods. Furthermore, the development of on-chip micro-channel analytical (μFIA) systems begun and have gained much attention within the last two decades in view of the striking advantages over conventional FIA techniques. This paper reviews published information on detection of phosphomolybdenum blue in conventional systems as well as on micro-chip. It reports on the challenges encountered (interference from other complex anions), the achieve­ments made so far (intereference removal by electrokinetic separation) and what the future holds (simultaneous determination).


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2009 ◽  
Vol 47 (01) ◽  
Author(s):  
N Billecke ◽  
S Tröller ◽  
N Raschzok ◽  
MH Morgül ◽  
NN Kammer ◽  
...  

Metrologiya ◽  
2020 ◽  
pp. 25-42
Author(s):  
Dmitrii V. Khablov

This paper describes a promising method for non-contact vibration diagnostics based on the use of Doppler microwave sensors. In this case, active irradiation of the object with electromagnetic waves and the allocation of phase changes using two-channel quadrature processing of the received reflected signal are used. The modes of further fine analysis of the resulting signal using spectral or wavelet transformations depending on the nature of the active vibration are considered. The advantages of this non-contact and remote vibration analysis method for the study of complex dynamic objects are described. The convenience of the method for machine learning and use in intelligent systems of non-destructive continuous monitoring of the state of these objects by vibration is noted.


Sign in / Sign up

Export Citation Format

Share Document