scholarly journals Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhilei Zhao ◽  
Seiichiro Jinde ◽  
Shinsuke Koike ◽  
Mariko Tada ◽  
Yoshihiro Satomura ◽  
...  

Abstract Recent studies have shown that microRNAs (miRNAs) play a role as regulators of neurodevelopment by modulating gene expression. Altered miRNA expression has been reported in various psychiatric disorders, including schizophrenia. However, the changes in the miRNA expression profile that occur during the initial stage of schizophrenia have not been fully investigated. To explore the global alterations in miRNA expression profiles that may be associated with the onset of schizophrenia, we first profiled miRNA expression in plasma from 17 patients with first-episode schizophrenia and 17 healthy controls using microarray analysis. Among the miRNAs that showed robust changes, the elevated expression of has-miR-223-3p (miR-223) was validated via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using another independent sample set of 21 schizophrenia patients and 21 controls. To identify the putative targets of miR-223, we conducted a genome-wide gene expression analysis in neuronally differentiated SK-N-SH cells with stable miR-223 overexpression and an in silico analysis. We found that the mRNA expression levels of four genes related to the cytoskeleton or cell migration were significantly downregulated in miR-223-overexpressing cells, possibly due to interactions with miR-223. The in silico analysis suggested the presence of miR-223 target sites in these four genes. Lastly, a luciferase assay confirmed that miR-223 directly interacted with the 3′ untranslated regions (UTRs) of all four genes. Our results reveal an increase in miR-223 in plasma during both the first episode and the later stage of schizophrenia, which may affect the expression of cell migration-related genes targeted by miR-223.

2009 ◽  
Vol 9 ◽  
pp. S148
Author(s):  
HE Johnsen ◽  
T Urup ◽  
AD Hoejfeldt ◽  
KB Fogd ◽  
KS Bergkvist ◽  
...  

2020 ◽  
Vol 127 ◽  
pp. 124-135
Author(s):  
George D. Vavougios ◽  
Christiane Nday ◽  
Sygliti-Henrietta Pelidou ◽  
Sotirios G. Zarogiannis ◽  
Konstantinos I. Gourgoulianis ◽  
...  

2008 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Francisco J Ossandon ◽  
Cynthia Villarroel ◽  
Francisco Aguayo ◽  
Eudocia Santibanez ◽  
Naohide Oue ◽  
...  

BMC Cancer ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Ji Liu ◽  
Xue Li ◽  
Guang-Long Dong ◽  
Hong-Wei Zhang ◽  
Dong-Li Chen ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Arman Shahrisa ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Ansari ◽  
Zahra Mohammadi ◽  
Vinicio Carloni ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer that occurs predominantly in patients with previous liver conditions. In the absence of an ideal screening modality, HCC is usually diagnosed at an advanced stage. Recent studies show that loss or gain of genomic materials can activate the oncogenes or inactivate the tumor suppressor genes to predispose cells toward carcinogenesis. Here, we evaluated both the copy number alteration (CNA) and RNA sequencing data of 361 HCC samples in order to locate the frequently altered chromosomal regions and identify the affected genes. Results Our data show that the chr1q and chr8p are two hotspot regions for genomic amplifications and deletions respectively. Among the amplified genes, YY1AP1 (chr1q22) possessed the largest correlation between CNA and gene expression. Moreover, it showed a positive correlation between CNA and tumor grade. Regarding deleted genes, CHMP7 (chr8p21.3) possessed the largest correlation between CNA and gene expression. Protein products of both genes interact with other cellular proteins to carry out various functional roles. These include ASH1L, ZNF496, YY1, ZMYM4, CHMP4A, CHMP5, CHMP2A and CHMP3, some of which are well-known cancer-related genes. Conclusions Our in-silico analysis demonstrates the importance of copy number alterations in the pathology of HCC. These findings open a door for future studies that evaluate our results by performing additional experiments.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
R Ragusa ◽  
A Di Molfetta ◽  
S Del Turco ◽  
G Basta ◽  
M Rizzo ◽  
...  

Abstract Background VAD use in heart failure (HF) children have undergone rapid progress in the last three decades through pump technological innovation and improvement of perioperative care. Studies in HF adults showed that VAD put native heart at rest and lead to molecular changes in cardiac muscle, including at microRNA (miRNA) level. However, little is known on changes induced by VAD implant in cardiac miRNA expression and their putative targets in HF children. Purpose The aims of this study were to evaluate: 1) modification of miRNA expression in cardiac muscle from HF children after VAD support; 2) the putative targets of selected miRNAs by in silico analysis; 2) the role of the identify miRNAs on putative targets by in vitro study. Methods Cardiac biopsies were collected from HF children at the moment of VAD implant [n=8; 20 (7.5–64.5) months, 2 males; 19 (15.75–32.25) LVEF%] and at the time of heart transplant after VAD support [n=5; 32 (5–204) months; 4 males; 13.5 (10–18) LVEF%]. Cardiac miRNA expression was evaluated by NGS. The potential miRNA targets were identified by bioinformatics analyses and their cardiac expression by real-time PCR was evaluated. HL-1 cell line was used for testing the regulatory role of selected miRNA on predicted targets by miRNA mimic transfection study. Results At NGS, 465 miRNA were found on average in each sample and the cardiac expression levels of miR19a-3p, miR-1246 and miR-199b-5p decreased in HF children after VAD support compared to pre-implant (Fig. 1A-B). In silico analysis showed that more than 5000 potential gene targets regulated by miR-19a-3p, miR-1246 and miR-199b-5p. Among them, adiponectin receptors (AdipoR1, AdipoR2, T-CAD) were identified as common targets for 3 miRNAs. Real-time PCR data showed that levels of all adiponectin receptors increased significantly whilst the expression of 3 miRNAs decreased after VAD support (Fig. 1C). Moreover, AdipoR2 and T-CAD were inversely related to miRNA levels (Fig. 1D). In vitro studies confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2 (Fig. 1E-F), whilst only miR-199b-5p reduced the expression of T-CAD (Fig. 1G). Finally, AdipoR1 expression levels are not modified compared to control by miRNAs mimic transfection (data not shown). Conclusion In HF children the use of VAD could modify the expression of several miRNAs potentially involved in the regulation of several pathophysiological mechanisms underlying HF. Specifically, the reductions of miR-1246, mir-19a-3p, miR-199b-5p were associated with an increase of the adiponectin receptors AdipoR2 and T-CAD mRNA, suggesting the existence of a miRNAs related fine tuning of the adiponectin system at cardiac tissue level by VAD implant, able to favour the protective effect of adiponectin in HF cardiac muscle. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – EU funding. Main funding source(s): FP7-ICT-2009 Project, Grant Agreement 24863 Figure 1


Sign in / Sign up

Export Citation Format

Share Document