scholarly journals MyoD1 suppresses cell migration and invasion by inhibiting FUT4 transcription in human gastric cancer cells

2019 ◽  
Vol 27 (10-11) ◽  
pp. 773-784 ◽  
Author(s):  
Fei Wu ◽  
Yannan Qin ◽  
Qiuyu Jiang ◽  
Jinyuan Zhang ◽  
Fang Li ◽  
...  

AbstractMyogenic differentiation 1 (MyoD1) is a transcription factor that promotes expression of muscle-specific genes. MyoD1 is expressed at significantly lower levels in gastric cancer (GC) tissues and cells, and it induces apoptosis in GC cells. However, functions for MyoD1 in GC cell migration and gene expression have not been documented. We show that knockdown of MyoD1 promoted migration and invasion of GC cells, whereas MyoD1 overexpression suppressed migration and invasion. We performed chromatin immunoprecipitation (ChIP)-sequencing to identify MyoD1 target genes in MKN-45 cells. The 2-kb upstream regions (Up2k) of the transcription start sites of 57 genes were probably bound by MyoD1. Six of these genes function in signaling pathways such as synthesis of glycosphingolipid biosynthesis—lacto and neolacto series. MyoD1 inhibited transcription of fucosyltransferase IV (FUT4) by binding directly to the FUT4 F3; this finding was validated by ChIP-quantitative PCR and a luciferase reporter assay. Ulex europaeus agglutinin I, which binds Fucα1-2Galβ1-4GlcNAc, and Lewis antigens showed decreased binding to the plasma membrane of cells that overexpressed MyoD1. Knockdown of FUT4 mimicked MyoD1 overexpression by suppressing GC cell migration and invasion; this result implied that MyoD1 suppressed cell migration and invasion via inhibiting the FUT4/matrix metallopeptidase signaling pathway. In summary, this study demonstrated that MyoD1 suppresses migration and invasion of GC cells by directly binding to the F3 region in the FUT4 Up2k and inhibiting FUT4/type II Lewis antigen expression.

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 561
Author(s):  
Yingming Jiang ◽  
Xihu Yu ◽  
Yandong Zhao ◽  
Jintuan Huang ◽  
Tuoyang Li ◽  
...  

A Disintegrin and Metalloproteinase with Thrombospondin motifs 19 (ADAMTS19) has been reported to participate in the pathogenesis of solid cancers. However, its role in gastric cancer (GC) remains undocumented. Using immunohistochemistry (IHC) staining and quantitative real-time polymerase chain reaction (qRT-PCR) on GC tissues and adjacent normal tissues, we found that ADAMTS19 was downregulated in GC tissues (IHC: p < 0.001; qRT-PCR: p = 0.017). Further investigation revealed that ADAMTS19 correlated with distant metastasis (p = 0.008) and perineural invasion (p = 0.018) and that patients with low ADAMTS19 had worse overall survival (p = 0.021). Gain- and loss-of-function assays showed that ADAMTS19 suppressed cell migration and invasion in vitro. Using bioinformatics analysis and co-immunoprecipitation, immunofluorescence, and dual-luciferase reporter gene assays, we confirmed that ADAMTS19 binds with cytoplasm P65, decreasing the nucleus phosphorylation of P65, a crucial transcription factor in the nuclear factor kappa-B (NF-κB) pathway, thereby downregulating S100 calcium-binding protein A16 (S100A16) expression. S100A16 acted as the downstream of ADAMTS19, reversing the suppression of cell migration and invasion by ADAMTS19 in vitro. A combination of ADAMTS19 and S100A16 expression provided the optimal prognostic indicator for GC. Patients with ADAMTS19high-S100A16low had better overall survival than ADAMTS19low-S100A16high patients (p = 0.006). These results suggest that ADAMTS19 suppresses cell migration and invasion by targeting S100A16 via the NF-κB pathway and that ADAMTS19 and S100A16 are potential metastasis and survival biomarkers for GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2018 ◽  
Vol Volume 12 ◽  
pp. 205-215 ◽  
Author(s):  
Liu Yang ◽  
Shuguang Zhang ◽  
Kai Guo ◽  
Hu Huang ◽  
Shuai Qi ◽  
...  

2020 ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background: Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study.Methods: CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression.Results: A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells.Conclusions: Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in gastric cancer cells.


2020 ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background: Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods: CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ 2 -test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results: A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions: Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


2020 ◽  
Vol Volume 13 ◽  
pp. 6847-6848
Author(s):  
Liu Yang ◽  
Shuguang Zhang ◽  
Kai Guo ◽  
Hu Huang ◽  
Shuai Qi ◽  
...  

2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Zhengqiang Mao ◽  
Hang Li ◽  
Botao Du ◽  
Kai Cui ◽  
Yuguang Xing ◽  
...  

Gastric cancer (GC) is one of the most prevalent gastrointestinal malignancies. Long noncoding RNA (lncRNA) DANCR is a newly identified oncogenic lncRNA. However, the functional role and underlying molecular mechanisms of DANCR involved in GC progress remain unclear. In the present study, we investigated the biological function and underlying mechanisms of DANCR in GC cell migration and invasion. The results showed that knockdown of DANCR inhibited migration and invasion of GC cells, whereas overexpression of DANCR showed the opposite effect. Further investigation demonstrated that lncRNA-LET was a bona fide target gene of DANCR. In addition, high DANCR and low lncRNA-LET were significantly correlated with lymph node metastasis and late clinical stage. DANCR associated with EZH2 and HDAC3 to epigenetically silence lncRNA-LET and then regulated GC migration and invasion. Taken together, these findings indicate an important role for DANCR–lncRNA-LET axis in GC cell migration and invasion, and reveal a novel epigenetic mechanism for lncRNA-LET silencing.


2021 ◽  
Author(s):  
Yuwu Liu ◽  
Chen Lin ◽  
Dongmei Wang ◽  
Sailan Wen ◽  
Junpu Wang ◽  
...  

Abstract Background MicroRNAs(miRNAs) are involved in the regulation of multiple cellular pathways and play a key role in the development and progression of tumor. Multiple studies have shown that abnormal expression of miRNAs has close relation with the incidence of HCC, but the mechanism of miRNAs in HCC still needs further research. Here, we investigated the mechanism of miR-224 in the invasion and metastasis of liver cancer. Methods We employed real-time quantitative PCR to detect the expression of miR-224 and ADAM17 and HOXA5 in HCC tissues. The expression level of HOXA5 in liver cancer tissues was further verified by immunohistochemistry (IHC). Real time PCR and Western bloting were used to detect the expression changes of ADAM17 and HOXA5 caused by overexpression or silencing of miR-224.Dual luciferase reporter assays demonstrated a direct association between miR-224 and its target gene ADAM17 and HOXA5. The migration and invasion experiment, MTT assay and flow cytometry were performed to investigate the changes of the biology function of HCC cell after overexpression or silencing of miR-224. Results The data showed that miR-224 and ADAM17 were significantly up-regulated and HOXA5 was significantly down-regulated in HCC tissues. The targeted regulatory relationship between miR-224 and its target genes ADAM17 and HOXA5 was also demonstrated. More importantly, we found that miR-224 positively regulates cell migration and invasion in HCC, miR-224 overexpression can promote the migration and invasion of BEL-7402 cell, and miR-224 silencing can suppress the migration and invasion of BEL-7402 cell. MiR-224 overexpression can result in the redistribution of cell cycle, the cell percentage of S phase was increased significantly, the cell percentage of G1 phase was decreased significantly, and there is no noticeable change for the cell percentage of G2 phase. Conclusions These results demonstrated that miR-224 may be exert the function of oncogenes in a particular link of cancer cell growth, it will become a promising biological target in the treatment strategy of hepatocellular carcinoma (HCC).


Sign in / Sign up

Export Citation Format

Share Document