scholarly journals Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Qiongxia Deng ◽  
Ruowei Wen ◽  
Sirui Liu ◽  
Xiaoqiu Chen ◽  
Shicong Song ◽  
...  

Abstract Excessive mitochondrial fission plays a key role in podocyte injury in diabetic kidney disease (DKD), and long noncoding RNAs (lncRNAs) are important in the development and progression of DKD. However, lncRNA regulation of mitochondrial fission in podocytes is poorly understood. Here, we studied lncRNA maternally expressed gene 3 (Meg3) in mitochondrial fission in vivo and in vitro using human podocytes and Meg3 podocyte-specific knockdown mice. Expression of lncRNA Meg3 in STZ-induced diabetic mice was higher, and correlated with the number of podocytes. Excessive mitochondrial fission of podocytes and renal histopathological and physiological parameters were improved in podocyte-specific Meg3 knockdown diabetic mice. Elongated mitochondria with attenuated podocyte damage, as well as mitochondrial translocation of dynamin-related protein 1 (Drp1), were decreased in Meg3 knockout podocytes. By contrast, increased fragmented mitochondria, podocyte injury, and Drp1 expression and phosphorylation were observed in lncRNA Meg3-overexpressing podocytes. Treatment with Mdivi1 significantly blunted more fragmented mitochondria and reduced podocyte injury in lncRNA Meg3-overexpressing podocytes. Finally, fragmented mitochondria and Drp1 mitochondrial translocation induced by high glucose were reduced following treatment with Mdivi1. Our data show that expression of Meg3 in podocytes in both human cells and diabetic mice was higher, which regulates mitochondrial fission and contributes to podocyte injury through increased Drp1 and its translocation to mitochondria.

2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Li ◽  
Delma Veron ◽  
Alda Tufro

The molecular pathogenesis of diabetic kidney disease progression is complex and remains unresolved. Rho-GAP MYO9A was recently identified as a novel podocyte protein and a candidate gene for monogenic FSGS. Myo9A involvement in diabetic kidney disease has been suggested. Here, we examined the effect of diabetic milieu on Myo9A expression in vivo and in vitro. We determined that Myo9A undergoes S-nitrosylation, a post-translational modification dependent on nitric oxide (NO) availability. Diabetic mice with nodular glomerulosclerosis and severe proteinuria associated with doxycycline-induced, podocyte-specific VEGF164 gain-of-function showed markedly decreased glomerular Myo9A expression and S-nitrosylation, as compared to uninduced diabetic mice. Immortalized mouse podocytes exposed to high glucose revealed decreased Myo9A expression, assessed by qPCR, immunoblot and immunocytochemistry, and reduced Myo9A S-nitrosylation (SNO-Myo9A), assessed by proximity link assay and biotin switch test, functionally resulting in abnormal podocyte migration. These defects were abrogated by exposure to a NO donor and were not due to hyperosmolarity. Our data demonstrate that high-glucose induced decrease of both Myo9A expression and SNO-Myo9A is regulated by NO availability. We detected S-nitrosylation of Myo9A interacting proteins RhoA and actin, which was also altered by high glucose and NO dependent. RhoA activity inversely related to SNO-RhoA. Collectively, data suggest that dysregulation of SNO-Myo9A, SNO-RhoA and SNO-actin may contribute to the pathogenesis of advanced diabetic kidney disease and may be amenable to therapeutic targeting.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2200-2210 ◽  
Author(s):  
Jinlong Luo ◽  
Ming Liang ◽  
William E. Mitch ◽  
Farhad R. Danesh ◽  
Michael Yu ◽  
...  

Abstract To understand how endothelial cell (EC) dysfunction contributes to the failure of arteriovenous graft (AVG), we investigated the role of fibroblast-specific protein 1 (FSP-1) in cultured ECs and a mouse AVG model. In vitro, we uncovered a new FSP-1-dependent pathway that activates rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) in ECs, leading to phosphorylation of myosin light chain 2 resulting in EC dysfunction. In cultured ECs, high glucose stimulated FSP-1 expression and increased permeability of an EC monolayer. The increase in permeability by the high glucose concentration was mediated by FSP-1 expression. Treatment of cultured ECs with FSP-1 caused leakage of the endothelial barrier plus increased expression of adhesion molecules and decreased expression of junction molecules. These responses were initiated by binding of FSP-1 to receptor for advanced glycation end products, which resulted in ROCK1 activation. In vivo, diabetes increased infiltration of inflammatory cells into AVGs and stimulated neointima formation. Increased FSP-1 expression and ROCK1 activation were found in AVGs of diabetic mice. Blocking FSP-1 suppressed diabetes-induced ROCK1 activation in AVGs. In mice with FSP-1 knockout or with ROCK1 knockout, accumulation of inflammatory cells and neointima formation in AVG were attenuated despite diabetes. Thus, mechanisms of inhibiting FSP-1 in ECs could improve AVG function.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Bo Zhao ◽  
Quan Yuan ◽  
Jia-bao Hou ◽  
Zhong-yuan Xia ◽  
Li-ying Zhan ◽  
...  

Background. A substantial increase in histone deacetylase 3 (HDAC3) expression is implicated in the pathological process of diabetes and stroke. However, it is unclear whether HDAC3 plays an important role in diabetes complicated with stroke. We aimed to explore the role and the potential mechanisms of HDAC3 in cerebral ischemia/reperfusion (I/R) injury in diabetic state. Methods. Diabetic mice were subjected to 1 h ischemia, followed by 24 h reperfusion. PC12 cells were exposed to high glucose for 24 h, followed by 3 h of hypoxia and 6 h of reoxygenation (H/R). Diabetic mice received RGFP966 (the specific HDAC3 inhibitor) or vehicle 30 minutes before the middle cerebral artery occlusion (MCAO), and high glucose-incubated PC12 cells were pretreated with RGFP966 or vehicle 6 h before H/R. Results. HDAC3 inhibition reduced the cerebral infarct volume, ameliorated pathological changes, improved the cell viability and cytotoxicity, alleviated apoptosis, attenuated oxidative stress, and enhanced autophagy in cerebral I/R injury model in diabetic state in vivo and in vitro. Furthermore, we found that the expression of HDAC3 was remarkably amplified, and the Bmal1 expression was notably decreased in diabetic mice with cerebral I/R, whereas this phenomenon was obviously reversed by RGFP966 pretreatment. Conclusions. These results suggested that the HDAC3 was involved in the pathological process of the complex disease of diabetic stroke. Suppression of HDAC3 exerted protective effects against cerebral I/R injury in diabetic state in vivo and in vitro via the modulation of oxidative stress, apoptosis, and autophagy, which might be mediated by the upregulation of Bmal1.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 608
Author(s):  
Laura Ciarlo ◽  
Francesca Marzoli ◽  
Paola Minosi ◽  
Paola Matarrese ◽  
Stefano Pieretti

Glycyrrhiza glabra, commonly known as liquorice, contains several bioactive compounds such as flavonoids, sterols, triterpene, and saponins; among which, glycyrrhizic acid, an oleanane-type saponin, is the most abundant component in liquorice root. Diabetic peripheral neuropathy is one of the major complications of diabetes mellitus, leading to painful condition as neuropathic pain. The pathogenetic mechanism of diabetic peripheral neuropathy is very complex, and its understanding could lead to a more suitable therapeutic strategy. In this work, we analyzed the effects of ammonium glycyrrhizinate, a derivate salt of glycyrrhizic acid, on an in vitro system, neuroblastoma cells line SH-SY5Y, and we observed that ammonium glycyrrhizinate was able to prevent cytotoxic effect and mitochondrial fragmentation after high-glucose administration. In an in vivo experiment, we found that a short-repeated treatment with ammonium glycyrrhizinate was able to attenuate neuropathic hyperalgesia in streptozotocin-induced diabetic mice. In conclusion, our results showed that ammonium glycyrrhizinate could ameliorate diabetic peripheral neuropathy, counteracting both in vitro and in vivo effects induced by high glucose, and might represent a complementary medicine for the clinical management of diabetic peripheral neuropathy.


2021 ◽  
Author(s):  
Mengru Zeng ◽  
Jin Wen ◽  
Zhengwei Ma ◽  
Li Xiao ◽  
Yutao Liu ◽  
...  

<a>Exosomes have been implicated in diabetic kidney disease (DKD), but the regulation of exosomes in DKD is largely unknown. Here, we have verified the decrease of exosome secretion in DKD and unveiled the underlying mechanism. In mouse proximal tubule (BUMPT) cells, high glucose (HG) treatment led to a significant decrease in exosome secretion, which was associated with specific downregulation of RAB27B, a key GTPase in exosome secretion. Overexpression of RAB27B restored exosome secretion in HG-treated cells, suggesting a role of RAB27B downregulation in the decrease of exosome secretion in DKD. To understand the mechanism of RAB27B downregulation, we conducted bioinformatics analysis that identified FOXO1 binding sites in the Rab27b gene promoter. Consistently, HG induced phosphorylation of FOXO1 in BUMPT cells, preventing FOXO1 accumulation and activation in the nucleus. Overexpression of non-phosphorylatable, constitutively active FOXO1 led to the upregulation of RAB27B and increase in exosome secretion in HG-treated cells. In vivo, compared with normal mice, diabetic mice showed increased FOXO1 phosphorylation, decreased RAB27B expression, and reduced exosome secretion. Collectively, these results unveil the mechanism of exosome dysfunction in DKD where FOXO1 is phosphorylated and inactivated in DKD, resulting in RAB27B downregulation and the decrease of exosome secretion. </a>


2018 ◽  
Author(s):  
Yan Xing ◽  
Xiaodong Zheng ◽  
Yao Fu ◽  
Jing Qi ◽  
Minghui Li ◽  
...  

ABSTRACTThe expression and function of long noncoding RNAs (lncRNAs) in the development of hypoxic pulmonary hypertension, especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs) are largely unknown. Here, we characterized the expression of lncRNA-maternally expressed gene 3 (lncRNA-MEG3) was significantly increased and primarily located in the cytoplasm of PASMCs by hypoxia. LncRNA-MEG3 knockdown by lung-specific delivery of small interfering RNAs (siRNAs) significantly prevented the development of hypoxic pulmonary hypertension in vivo. Silencing of lncRNA-MEG3 by siRNAs and gapmers attenuated PASMC responses to hypoxia in vitro. Mechanically, we found that lncRNA-MEG3 acts as a molecular sponge of microRNA-328 (miR-328); upon hypoxia, lncRNA-MEG3 interacts and sequesters miR-328, leading to the upregulation of insulin-like growth factor 1 receptor (IGF1R). Additionally, higher expression of lncRNA-MEG3 and IGF1R, and lower expression of miR-328 were observed in PASMCs of iPAH patients. These data provide insight into the contribution of lncRNA-MEG3 in hypoxia pulmonary hypertension. Upregulation of lncRNA-MEG3 sequesters cytoplasmic miR-328, eventually leading to the expression of IGF1R, revealing a regulatory mechanism by lncRNAs in hypoxia-induced PASMC proliferation.


2021 ◽  
Vol 11 (3) ◽  
pp. 351-358
Author(s):  
Kai Yan ◽  
Lin Niu ◽  
Huili Tian ◽  
Fanfan Su ◽  
Yao Chen

Oxidative stress is an important factor affecting retinal ganglion cell (RGC) apoptosis. RGC apoptosis is the main pathophysiological feature of visual impairment as a result of glaucoma. Recently, it has been found that long noncoding RNA (lncRNA) and microRNAs are involved in RGC apoptosis. Here, the function of lncRNA maternally expressed gene 3 (MEG3) and miR-30b in H2 O2-induced RGC proliferation, apoptosis, and oxidative stress was investigated. The expression levels of MEG3 and miR-30b were detected by RT-PCR; the effects of MEG3 and miR-30b on the proliferation and apoptosis of RGCs were observed by flow cytometry; the levels of apoptosis-related proteins and AKT/PI3K signal pathway proteins were detected by protein immunoassay; and the regulation of miR-34a by pvt1 was verified by in vivo and in vitro experiments. The expression of MEG3 and miR-30b increased and decreased significantly in RGCs treated by H2O2. MEG3 expression decreased, apoptosis level-related proteins decreased, the apoptosis rate reduced, and the activity of MDA and SOD decreased. When the expression of miR-34a was inhibited, the proliferation rate of RGCs increased, the apoptosis rate decreased, and the level of apoptosis-related proteins decreased, which reversed MEG3’s effect on RGC apoptosis and proliferation. Furthermore, pvt1 could bind the miR-30b promoter and regulate it with in vitro expression and in vivo expression. Besides, we found that miR-30b can regulate the AKT/PI3K signaling pathway and participate in cell apoptosis and hyperplasia in stress response. LncRNA MEG3 targets miR-30b and regulates the AKT/PI3K signaling pathway on H2 O2-induced cell apoptosis, hyperplasia, and oxidative stress of RGCs.


2013 ◽  
Vol 305 (5) ◽  
pp. F691-F700 ◽  
Author(s):  
Khaled Khazim ◽  
Yves Gorin ◽  
Rita Cassia Cavaglieri ◽  
Hanna E. Abboud ◽  
Paolo Fanti

Podocyte injury, a major contributor to the pathogenesis of diabetic nephropathy, is caused at least in part by the excessive generation of reactive oxygen species (ROS). Overproduction of superoxide by the NADPH oxidase isoform Nox4 plays an important role in podocyte injury. The plant extract silymarin is attributed antioxidant and antiproteinuric effects in humans and in animal models of diabetic nephropathy. We investigated the effect of silybin, the active constituent of silymarin, in cultures of mouse podocytes and in the OVE26 mouse, a model of type 1 diabetes mellitus and diabetic nephropathy. Exposure of podocytes to high glucose (HG) increased 60% the intracellular superoxide production, 90% the NADPH oxidase activity, 100% the Nox4 expression, and 150% the number of apoptotic cells, effects that were completely blocked by 10 μM silybin. These in vitro observations were confirmed by similar in vivo findings. The kidney cortex of vehicle-treated control OVE26 mice displayed greater Nox4 expression and twice as much superoxide production than cortex of silybin-treated mice. The glomeruli of control OVE26 mice displayed 35% podocyte drop out that was not present in the silybin-treated mice. Finally, the OVE26 mice experienced 54% more pronounced albuminuria than the silybin-treated animals. In conclusion, this study demonstrates a protective effect of silybin against HG-induced podocyte injury and extends this finding to an animal model of diabetic nephropathy.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Eva Ludvigsen ◽  
Mats Stridsberg ◽  
Eva T. Janson ◽  
Stellan Sandler

Somatostatin acts via five receptors (sst1-5). We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentrationin vitroas compared to the islet transplantationin vivoto diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.


2021 ◽  
Author(s):  
Ying Cai ◽  
Yong Xu ◽  
Qicheng Ni ◽  
Bei Guo ◽  
Sheng Chen ◽  
...  

Abstract Objective Ellagic acid (EA) as a multi-target bioactive compound has been reported to improve diabetes-related complications, including diabetic nephropathy (DN). Herein, we plan to investigate the molecular mechanism underlying EA-mediated renal protection in diabetic mice. Methods Streptozotocin (STZ; 35 mg/kg successive injection for 5 times) was applied to establish DN model in mice. Normal or diabetic mice were administrated by EA (100 mg/kg/day) by intragastric administration for 8 weeks. In vitro diabetic cell model, podocytes and renal tubular epithelial cells (RTECs) were exposed to normal glucose (NG; 5 mM) or high glucose (HG; 30 mM). Results Our results demonstrated that EA treatment prevented HG-induced podocyte and RTEC apoptosis and growth inhibition by inhibiting NF-κB/miR-150-3p to activate BCL2 in vitro. In vivo diabetic model of mice, EA administration improved renal filtration function, tubular and glomerular injury, and interstitial fibrosis. More importantly, supplementation of EA also suppressed NF-κB/miR-150-3p activation and accelerated BCL2 expression in the kidney of diabetic mice. In another experiment, miR-150-3p antagomir as a potential gene therapeutic choice has been validated to rescue hyperglycemia-induced renal dysfunction in mouse model. Taken together, in vitro and in vivo experimental measurements corroborate that EA modulates NF-κB/miR-150-3p/BCL2 cascade signaling to attenuate renal damage in diabetic models. Conclusion Our findings revealed that EA modulated the suppression of NF-κB/miR-150-3p to activate BCL2 that contributed to prevent hyperglycemia-induced renal dysfunction. In addition, synthetic miR-150-3p antagomir or inhibitors could alleviate tubular injury and interstitial fibrosis, and prevent HG-induced podocyte and RTEC apoptosis.


Sign in / Sign up

Export Citation Format

Share Document