scholarly journals Molecular mechanisms of methylglyoxal-induced aortic endothelial dysfunction in human vascular endothelial cells

2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jae Hyuk Lee ◽  
Amna Parveen ◽  
Moon Ho Do ◽  
Min Cheol Kang ◽  
Silvia Yumnam ◽  
...  
1993 ◽  
Vol 265 (4) ◽  
pp. H1424-H1433 ◽  
Author(s):  
R. C. Ziegelstein ◽  
L. Cheng ◽  
P. S. Blank ◽  
H. A. Spurgeon ◽  
E. G. Lakatta ◽  
...  

Acidosis produces vasodilation in a process that may involve the vascular endothelium. Because synthesis and release of endothelium-derived vasodilatory substances are linked to an increase in cytosolic calcium concentration ([Ca2+]i), we examined the effect of intracellular acidification on cultured rat aortic endothelial cells loaded either with the pH-sensitive probe carboxy-seminaphthorhodafluor-1 or the Ca(2+)-sensitive fluorescent probe indo 1. The basal cytosolic pH (pHi) of endothelial monolayers in a 5% CO2-HCO3- buffer was 7.27 +/- 0.02 and that in a bicarbonate-free solution was 7.22 +/- 0.03. Acidification was induced either by removal of NH4Cl (delta pHi = -0.10 +/- 0.02), changing from a bicarbonate-free to a 5% CO2-HCO3(-)-buffered solution at constant buffer pH (delta pHi = -0.18 +/- 0.03), or changing from a 5% to a 20% CO2-HCO3- solution (delta pHi = -0.27 +/- 0.07). Regardless of the method used, intracellular acidification increased [Ca2+]i as indexed by indo 1 fluorescence. The increase in [Ca2+]i induced by changing from a 5 to a 20% CO2-HCO3- solution was not significantly altered by removal of buffer Ca2+ either before or after depletion of bradykinin- and thapsigargin-sensitive intracellular Ca2+ stores. Thus intracellular acidification of vascular endothelial cells releases Ca2+ into the cytosol either from pH-sensitive intracellular buffer sites, mitochondria, or from bradykinin- and thapsigargin-insensitive intracellular stores. This Ca2+ mobilization may be linked to endothelial synthesis and release of vasodilatory substances during acidosis.


1988 ◽  
Vol 255 (4) ◽  
pp. C459-C464 ◽  
Author(s):  
H. L. Hachiya ◽  
P. A. Halban ◽  
G. L. King

Processing and transport of hormones across vascular endothelial cells may modulate hormone action at subendothelial tissue sites. Insulin was transported across cultured rat capillary and bovine aortic endothelial cells, after a delay of 5-10 min, at a constant rate for 60 min at 37 degrees C. 125I-labeled insulin transport was inhibited by 88 +/- 11% (SE, n = 4) and 75 +/- 18% (SE, n = 4) in the presence of anti-insulin receptor antibody and unlabeled insulin (at 10(-7) M), respectively. Reverse phase high-performance liquid chromatography showed 88% of the 125I-insulin transported over 60 min was indistinguishable from the 125I-insulin added to the cells at 4 degrees C. In aortic endothelial cells preincubated with 2.3 x 10(-9) M of insulin for 24 h, insulin receptor binding was downregulated by 67%, and 125I-insulin transport was decreased by 52 +/- 11%. The proton ionophore monensin (0.05 mM) increased the internalized insulin in bovine aortic endothelial cells by 78%, with a corresponding decrease in 125I-insulin released by 76 +/- 2% (SE, n = 4). 125I-insulin transport across the aortic endothelial cell monolayer was similarly decreased (54 +/- 12%, SE, n = 4) by monensin. In contrast, the lysosomal protease inhibitor leupeptin had no effect. Degradation and transport were similarly dissociated by low temperature. At 15 degrees C, no significant insulin degradation was detected, whereas 125I-insulin release from the cells continued at 30 +/- 3% of the rate at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 214 (3) ◽  
pp. 975-981 ◽  
Author(s):  
N J Cusack ◽  
J D Pearson ◽  
J L Gordon

We have investigated the stereoselectivity of ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5′-nucleotidase, EC 3.1.3.5) on pig aortic endothelial cells using two classes of nucleotide analogue. In experiments with nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety, the rate of catabolism of 100 microM-L-ATP was one-fifth that of D-ATP, the rate of catabolism of 100 microM-L-ADP was one-fifteenth that of D-ADP and there was no detectable catabolism of 100 microM-L-AMP. Each of the L-enantiomers inhibited, apparently competitively, the catabolism of the corresponding D-enantiomer; Ki values were approx. 0.6 mM, 1.0 mM and 3.9 mM for L-ATP, L-ADP and L-AMP respectively. Experiments with adenosine 5′-[beta, gamma-imido]triphosphate and with D- and L-enantiomers of adenosine 5′-[beta, gamma-methylene]triphosphate revealed modest ectopyrophosphatase activity, undetectable in experiments with natural nucleotides, which was also stereoselective. Use of phosphorothioate nucleotide analogues demonstrated that ATP catabolism was virtually stereospecific with respect to the geometry of the thiol group substituted on the beta-phosphate: the Rp isomer was degraded, whereas there was little or no breakdown of the Sp isomer. ADP catabolism was also stereospecific with respect to the geometry of the thiol group substituted on the alpha-phosphate: the Sp isomer but not the Rp isomer was degraded. The geometry of thiol-group substitution on the alpha-phosphate had no effect on ATP catabolism to ADP. There was no detectable catabolism of analogues with thiol-group substitution on the terminal phosphate. Each of the phosphorothioate analogues that was catabolized broke down at a rate similar to that of the natural nucleotide from which it was derived. These results demonstrate that the ectonucleotidases on pig aortic endothelial cells exhibit a high degree of stereoselectivity, characteristic for each enzyme, both with respect to the ribofuranosyl moiety and to the phosphate side chain.


2012 ◽  
Vol 40 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Gillian R. Milne ◽  
Timothy M. Palmer ◽  
Stephen J. Yarwood

Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel ‘protective’ mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.


2013 ◽  
Vol 36 (4) ◽  
pp. 376-384 ◽  
Author(s):  
Sun Young Kim ◽  
Seok Woo Hong ◽  
Mi-Ok Kim ◽  
Hyun-Sik Kim ◽  
Jung Eun Jang ◽  
...  

1993 ◽  
Vol 265 (3) ◽  
pp. C763-C769 ◽  
Author(s):  
P. B. Perry ◽  
W. C. O'Neill

K efflux pathways responsible for regulatory volume decrease (RVD) were examined in bovine aortic endothelial cells. Hypotonic swelling produced a rapid and reversible threefold increase in bumetanide-insensitive 86Rb efflux. Swelling-activated 86Rb efflux was inhibited 43% when Cl was replaced with NO3, and this Cl-dependent efflux was inhibited by 1 mM furosemide. Neither Cl replacement nor furosemide inhibited the efflux stimulated by a Ca ionophore (A23187) in isotonic medium. Swelling-activated 86Rb efflux was also inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate but not by dinitrostilbenedisulfonate. Cell swelling induced a volume-regulatory K loss that was incomplete in hypotonic medium but complete and more rapid when bumetanide was added or when cells were swollen isosmotically. K loss in the presence of bumetanide was partially blocked by furosemide. We conclude that two separate swelling-activated K fluxes mediate RVD in aortic endothelial cells: a Cl-dependent, furosemide-sensitive, but bumetanide-insensitive flux that is consistent with K-Cl cotransport, and a Cl-independent efflux that presumably is mediated by K channels.


1991 ◽  
Vol 277 (1) ◽  
pp. 103-110 ◽  
Author(s):  
S Pirotton ◽  
B Verjans ◽  
J M Boeynaems ◽  
C Erneux

The accumulation of InsP1, InsP2, InsP3 and InsP4 isomers was investigated in bovine aortic endothelial cells labelled with [3H]inositol and stimulated with ATP. The separation of these isomers was performed by ion-pairing reverse-phase h.p.l.c. on a mu Bondapack C18 column for the InsP3 and InsP4 isomers and by ion-exchange h.p.l.c. on a Partisil SAX column for the InsP1 and InsP2 isomers. In unstimulated endothelial cells, a large amount of material was co-eluted with InsP5 and InsP6, whereas amounts of InsP3 and InsP4 were small. The addition of ATP (100 microM) induced a striking (35-fold stimulation) and transient increase of Ins(1,4,5)P3 that was maximal around 15 s. This peak was followed by a more sustained accumulation of Ins(1,3,4,5)P4 and Ins(1,3,4)P3, but the amounts of these two metabolites accumulated in response to ATP were much smaller than that of Ins(1,4,5)P3. The increase in InsP2 isomers in response to ATP had similar characteristics: a rapid and transient accumulation of Ins(1,4)P2, followed by an increase of Ins(3,4)P2 and Ins(1,3)P2, which was more sustained but had a smaller magnitude. ATP also induced the accumulation of both Ins1P and Ins4P, but with different time courses: the level of Ins4P was maximal at 1 min (60 times the control value) and returned to baseline after 5 min, whereas the increase in Ins1P was undetectable at 1 min and reached a maximum after 5 min, which represented 240% of the basal level. These data indicate that Ins(1,4,5)P3, which is rapidly formed in aortic endothelial cells as a result of activation of P2Y receptors, is preferentially metabolized at early times (less than 1 min) by a 5-phosphatase, with the sequential formation of Ins(1,4)P2 and Ins4P. Afterwards, a small but sustained increase in the content of Ins(1,3,4)P3, Ins(1,3)P2, Ins(3,4)P2 and Ins1P was observed, reflecting the activation of the Ins(1,4,5)P3 3-kinase.


Sign in / Sign up

Export Citation Format

Share Document