scholarly journals Metabolism of inositol phosphates in ATP-stimulated vascular endothelial cells

1991 ◽  
Vol 277 (1) ◽  
pp. 103-110 ◽  
Author(s):  
S Pirotton ◽  
B Verjans ◽  
J M Boeynaems ◽  
C Erneux

The accumulation of InsP1, InsP2, InsP3 and InsP4 isomers was investigated in bovine aortic endothelial cells labelled with [3H]inositol and stimulated with ATP. The separation of these isomers was performed by ion-pairing reverse-phase h.p.l.c. on a mu Bondapack C18 column for the InsP3 and InsP4 isomers and by ion-exchange h.p.l.c. on a Partisil SAX column for the InsP1 and InsP2 isomers. In unstimulated endothelial cells, a large amount of material was co-eluted with InsP5 and InsP6, whereas amounts of InsP3 and InsP4 were small. The addition of ATP (100 microM) induced a striking (35-fold stimulation) and transient increase of Ins(1,4,5)P3 that was maximal around 15 s. This peak was followed by a more sustained accumulation of Ins(1,3,4,5)P4 and Ins(1,3,4)P3, but the amounts of these two metabolites accumulated in response to ATP were much smaller than that of Ins(1,4,5)P3. The increase in InsP2 isomers in response to ATP had similar characteristics: a rapid and transient accumulation of Ins(1,4)P2, followed by an increase of Ins(3,4)P2 and Ins(1,3)P2, which was more sustained but had a smaller magnitude. ATP also induced the accumulation of both Ins1P and Ins4P, but with different time courses: the level of Ins4P was maximal at 1 min (60 times the control value) and returned to baseline after 5 min, whereas the increase in Ins1P was undetectable at 1 min and reached a maximum after 5 min, which represented 240% of the basal level. These data indicate that Ins(1,4,5)P3, which is rapidly formed in aortic endothelial cells as a result of activation of P2Y receptors, is preferentially metabolized at early times (less than 1 min) by a 5-phosphatase, with the sequential formation of Ins(1,4)P2 and Ins4P. Afterwards, a small but sustained increase in the content of Ins(1,3,4)P3, Ins(1,3)P2, Ins(3,4)P2 and Ins1P was observed, reflecting the activation of the Ins(1,4,5)P3 3-kinase.

1993 ◽  
Vol 265 (4) ◽  
pp. H1424-H1433 ◽  
Author(s):  
R. C. Ziegelstein ◽  
L. Cheng ◽  
P. S. Blank ◽  
H. A. Spurgeon ◽  
E. G. Lakatta ◽  
...  

Acidosis produces vasodilation in a process that may involve the vascular endothelium. Because synthesis and release of endothelium-derived vasodilatory substances are linked to an increase in cytosolic calcium concentration ([Ca2+]i), we examined the effect of intracellular acidification on cultured rat aortic endothelial cells loaded either with the pH-sensitive probe carboxy-seminaphthorhodafluor-1 or the Ca(2+)-sensitive fluorescent probe indo 1. The basal cytosolic pH (pHi) of endothelial monolayers in a 5% CO2-HCO3- buffer was 7.27 +/- 0.02 and that in a bicarbonate-free solution was 7.22 +/- 0.03. Acidification was induced either by removal of NH4Cl (delta pHi = -0.10 +/- 0.02), changing from a bicarbonate-free to a 5% CO2-HCO3(-)-buffered solution at constant buffer pH (delta pHi = -0.18 +/- 0.03), or changing from a 5% to a 20% CO2-HCO3- solution (delta pHi = -0.27 +/- 0.07). Regardless of the method used, intracellular acidification increased [Ca2+]i as indexed by indo 1 fluorescence. The increase in [Ca2+]i induced by changing from a 5 to a 20% CO2-HCO3- solution was not significantly altered by removal of buffer Ca2+ either before or after depletion of bradykinin- and thapsigargin-sensitive intracellular Ca2+ stores. Thus intracellular acidification of vascular endothelial cells releases Ca2+ into the cytosol either from pH-sensitive intracellular buffer sites, mitochondria, or from bradykinin- and thapsigargin-insensitive intracellular stores. This Ca2+ mobilization may be linked to endothelial synthesis and release of vasodilatory substances during acidosis.


1988 ◽  
Vol 255 (4) ◽  
pp. C459-C464 ◽  
Author(s):  
H. L. Hachiya ◽  
P. A. Halban ◽  
G. L. King

Processing and transport of hormones across vascular endothelial cells may modulate hormone action at subendothelial tissue sites. Insulin was transported across cultured rat capillary and bovine aortic endothelial cells, after a delay of 5-10 min, at a constant rate for 60 min at 37 degrees C. 125I-labeled insulin transport was inhibited by 88 +/- 11% (SE, n = 4) and 75 +/- 18% (SE, n = 4) in the presence of anti-insulin receptor antibody and unlabeled insulin (at 10(-7) M), respectively. Reverse phase high-performance liquid chromatography showed 88% of the 125I-insulin transported over 60 min was indistinguishable from the 125I-insulin added to the cells at 4 degrees C. In aortic endothelial cells preincubated with 2.3 x 10(-9) M of insulin for 24 h, insulin receptor binding was downregulated by 67%, and 125I-insulin transport was decreased by 52 +/- 11%. The proton ionophore monensin (0.05 mM) increased the internalized insulin in bovine aortic endothelial cells by 78%, with a corresponding decrease in 125I-insulin released by 76 +/- 2% (SE, n = 4). 125I-insulin transport across the aortic endothelial cell monolayer was similarly decreased (54 +/- 12%, SE, n = 4) by monensin. In contrast, the lysosomal protease inhibitor leupeptin had no effect. Degradation and transport were similarly dissociated by low temperature. At 15 degrees C, no significant insulin degradation was detected, whereas 125I-insulin release from the cells continued at 30 +/- 3% of the rate at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 214 (3) ◽  
pp. 975-981 ◽  
Author(s):  
N J Cusack ◽  
J D Pearson ◽  
J L Gordon

We have investigated the stereoselectivity of ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5′-nucleotidase, EC 3.1.3.5) on pig aortic endothelial cells using two classes of nucleotide analogue. In experiments with nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety, the rate of catabolism of 100 microM-L-ATP was one-fifth that of D-ATP, the rate of catabolism of 100 microM-L-ADP was one-fifteenth that of D-ADP and there was no detectable catabolism of 100 microM-L-AMP. Each of the L-enantiomers inhibited, apparently competitively, the catabolism of the corresponding D-enantiomer; Ki values were approx. 0.6 mM, 1.0 mM and 3.9 mM for L-ATP, L-ADP and L-AMP respectively. Experiments with adenosine 5′-[beta, gamma-imido]triphosphate and with D- and L-enantiomers of adenosine 5′-[beta, gamma-methylene]triphosphate revealed modest ectopyrophosphatase activity, undetectable in experiments with natural nucleotides, which was also stereoselective. Use of phosphorothioate nucleotide analogues demonstrated that ATP catabolism was virtually stereospecific with respect to the geometry of the thiol group substituted on the beta-phosphate: the Rp isomer was degraded, whereas there was little or no breakdown of the Sp isomer. ADP catabolism was also stereospecific with respect to the geometry of the thiol group substituted on the alpha-phosphate: the Sp isomer but not the Rp isomer was degraded. The geometry of thiol-group substitution on the alpha-phosphate had no effect on ATP catabolism to ADP. There was no detectable catabolism of analogues with thiol-group substitution on the terminal phosphate. Each of the phosphorothioate analogues that was catabolized broke down at a rate similar to that of the natural nucleotide from which it was derived. These results demonstrate that the ectonucleotidases on pig aortic endothelial cells exhibit a high degree of stereoselectivity, characteristic for each enzyme, both with respect to the ribofuranosyl moiety and to the phosphate side chain.


1993 ◽  
Vol 265 (3) ◽  
pp. C763-C769 ◽  
Author(s):  
P. B. Perry ◽  
W. C. O'Neill

K efflux pathways responsible for regulatory volume decrease (RVD) were examined in bovine aortic endothelial cells. Hypotonic swelling produced a rapid and reversible threefold increase in bumetanide-insensitive 86Rb efflux. Swelling-activated 86Rb efflux was inhibited 43% when Cl was replaced with NO3, and this Cl-dependent efflux was inhibited by 1 mM furosemide. Neither Cl replacement nor furosemide inhibited the efflux stimulated by a Ca ionophore (A23187) in isotonic medium. Swelling-activated 86Rb efflux was also inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate but not by dinitrostilbenedisulfonate. Cell swelling induced a volume-regulatory K loss that was incomplete in hypotonic medium but complete and more rapid when bumetanide was added or when cells were swollen isosmotically. K loss in the presence of bumetanide was partially blocked by furosemide. We conclude that two separate swelling-activated K fluxes mediate RVD in aortic endothelial cells: a Cl-dependent, furosemide-sensitive, but bumetanide-insensitive flux that is consistent with K-Cl cotransport, and a Cl-independent efflux that presumably is mediated by K channels.


1992 ◽  
Vol 285 (2) ◽  
pp. 585-591 ◽  
Author(s):  
S Pirotton ◽  
O Boutherin-Falson ◽  
B Robaye ◽  
J M Boeynaems

One- and two-dimensional gel electrophoresis of proteins from bovine aortic endothelial cells (BAEC) incubated with [gamma-32P]ATP revealed the preferential labelling of a cell-associated 21 kDa substrate. The labelling of this band was detectable within 30 s, increased up to 30 min and was stable for at least 3 h following the wash-out of the ATP. This protein was also labelled after incubation of the cells with [gamma-35S]ATP. Incorporation of radioactivity into the 21 kDa band did not occur if the endothelial cells were treated with low concentrations of trypsin (0.01%) before or after the labelling period. The pattern of BAEC protein phosphorylation by [gamma-32P]ATP was completely different from that of the fetal calf serum used for the cell culture. The presence of serum during the incubation of BAEC with [gamma-32P]ATP did not modify qualitatively the labelling pattern and, in particular, did not enhance the phosphorylation of the 21 kDa substrate; this suggests that neither the kinase nor the 21 kDa substrate are adsorbed serum proteins. Staurosporine, a protein kinase inhibitor with low specificity, decreased the labelling of the 21 kDa protein with an IC50 of 2 nM. In contrast, at 100 nM, staurosporine did not decrease the accumulation of inositol phosphates induced by ATP via the activation of P2y receptors. These data indicate the presence of aortic endothelial cells of an ecto-kinase which uses extracellular ATP to produce the selective and long-lived phosphorylation of a 21 kDa endothelial substrate. Ecto-phosphorylation of this protein might play a role in the modulation of endothelial cell functions by ATP, in addition to the P2y receptors [Boeynaems & Pearson (1990) Trends Pharmacol. Sci. 11, 34-37]. The exquisite sensitivity of ecto-phosphorylation to inhibition by staurosporine and its specific inhibition by some isoquinolinesulphonamide compounds provide potential pharmacological tools to investigate this hypothesis.


1995 ◽  
Vol 269 (2) ◽  
pp. H648-H655 ◽  
Author(s):  
R. Motterlini ◽  
R. Foresti ◽  
K. Vandegriff ◽  
M. Intaglietta ◽  
R. M. Winslow

We investigated the effect of different hemoglobins on the activation of endothelial heme oxygenase (HO), an inducible "stress" protein, which is responsible for heme catabolism, and we determined whether the propensity of hemoglobins to autoxidize correlates with endothelial heme uptake and cell injury. Porcine aortic endothelial cells were incubated for 6 h in the presence of 60 microM unmodified hemoglobin A0 (HbA0), hemoglobin cross-linked between the alpha-chains with bis-(3,5-dibromosalicyl)fumarate (alpha alpha Hb), or cyanomet-alpha alpha-hemoglobin (CNmet alpha alpha Hb). Endothelial HO activity augmented 4.1-fold in the presence of alpha alpha Hb, 2.7-fold with HbA0, and 1.8-fold with CNmet alpha alpha Hb over the control value. Deferoxamine, but not catalase or dimethylthiourea, partially attenuated the HO induction produced by alpha alpha Hb. The rates of methemoglobin formation exhibited a linear relationship over the time of incubation (r = 0.94), and the apparent rate constant was 1.8-fold higher for alpha alpha Hb (0.023 h-1) than for HbA0 (0.013 h-1). Endothelial heme content and lactate dehydrogenase (LDH) release, an index of cell injury, were also higher in alpha alpha Hb compared with HbA0 and CNmet alpha alpha Hb groups (P < 0.05). Deferoxamine but not catalase markedly reduced the release of LDH induced by alpha alpha Hb, whereas dimethylthiourea provided only a partial cytoprotection. These studies suggest that 1) the higher rate of oxidation of alpha alpha Hb contributes to the augmented endothelial HO activity, and 2) both heme release and iron-mediated oxygen radical formation are major contributors to endothelial oxidative stress and cytotoxicity generated by the cross-linked hemoglobin.


1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


2021 ◽  
Vol 9 (1) ◽  
pp. e002085
Author(s):  
Yuan Wei ◽  
Suwen Bai ◽  
YanHeng Yao ◽  
Wenxuan Hou ◽  
Junwei Zhu ◽  
...  

IntroductionDiabetes-associated endothelial barrier function impairment might be linked to disturbances in Ca2+ homeostasis. To study the role and molecular mechanism of Orais–vascular endothelial (VE)-cadherin signaling complex and its downstream signaling pathway in diabetic endothelial injury using mouse aortic endothelial cells (MAECs).Research design and methodsThe activity of store-operated Ca2+ entry (SOCE) was detected by calcium imaging after 7 days of high-glucose (HG) or normal-glucose (NG) exposure, the expression levels of Orais after HG treatment was detected by western blot analysis. The effect of HG exposure on the expression of phosphorylated (p)-VE-cadherin and VE-cadherin on cell membrane was observed by immunofluorescence assay. HG-induced transendothelial electrical resistance was examined in vitro after MAECs were cultured in HG medium. FD-20 permeability was tested in monolayer aortic endothelial cells through transwell permeability assay. The interactions between Orais and VE-cadherin were detected by co-immunoprecipitation and immunofluorescence technologies. Immunohistochemical experiment was used to detect the expression changes of Orais, VE-cadherin and p-VE-cadherin in aortic endothelium of mice with diabetes.Results(1) The expression levels of Orais and activity of SOCE were significantly increased in MAECs cultured in HG for 7 days. (2) In MAECs cultured in HG for 7 days, the ratio of p-VE-cadherin to VE-cadherin expressed on the cell membrane and the FD-20 permeability in monolayer endothelial cells increased, indicating that intercellular permeability increased. (3) Orais and VE-cadherin can interact and enhance the interaction ratio through HG stimulation. (4) In MAECs cultured with HG, the SOCE activator ATP enhanced the expression level of p-VE-cadherin, and the SOCE inhibitor BTP2 decreased the expression level of p-VE-cadherin. (5) Significantly increased expression of p-VE-cadherin and Orais in the aortic endothelium of mice with diabetes.ConclusionHG exposure stimulated increased expression of Orais in endothelial cells, and increased VE-cadherin phosphorylation through Orais–VE-cadherin complex and a series of downstream signaling pathways, resulting in disruption of endothelial cell junctions and initiation of atherosclerosis.


1983 ◽  
Vol 97 (6) ◽  
pp. 1677-1685 ◽  
Author(s):  
D Gospodarowicz ◽  
J Cheng ◽  
M Lirette

The mitogenic effects of brain and pituitary fibroblast growth factors (FGF) on vascular endothelial cells derived from either human umbilical vein or bovine aortic arch have been compared. Both brain and pituitary FGF are mitogenic for low density human umbilical endothelial (HUE) cell cultures maintained on either fibronectin- or laminin-coated dishes or on biomatrices produced by cultured cells such as bovine corneal endothelial cells or the teratocarcinoma cell line PF-HR-9. Pituitary FGF triggered the proliferation of HUE cells at concentrations as low as 0.25 ng/ml, with a half-maximal response at 0.55 ng/ml and optimal effect at 2.5 to 5 ng/ml. It was 50,000-fold more potent than commercial preparations of endothelial cell growth factor and 40 times more potent than commercial preparations of pituitary FGF. Similar results were observed when the effect of pituitary FGF was tested on low density cultures of adult bovine aortic endothelial cells. When the activity of brain and pituitary FGF on low density HUE cell cultures was compared, both mitogens were active. To confirm the presence in brain extract of both acidic and neutral, as well as of basic mitogen, for HUE cells, brain tissues were extracted at acidic (4.5), neutral (7.2), and basic (8.5) pH. The three types of extracts were equally potent in supporting the proliferation of either HUE or adult bovine aortic endothelial cells. When the various extracts were absorbed at pH 6.0 on a carboxymethyl Sephadex C-50 column, the neutral and basic extracts had an activity after adsorption similar to that of unadsorbed extracts. In contrast, extracts prepared at pH 4.5 lost 90-95% of their activity which was recovered in the adsorbed fraction containing FGF.


1995 ◽  
Vol 269 (3) ◽  
pp. C733-C738 ◽  
Author(s):  
L. Vaca ◽  
D. L. Kunze

Although it is clear that D-myo-inositol 1,4,5-trisphosphate (IP3) plays an important role in the activation of Ca2+ influx, the mechanisms by which this occurs remain controversial. In an attempt to determine the role of IP3 in the activation of Ca2+ influx, patch-clamp single-channel experiments in the cell-attached, inside-out, and outside-out configurations were performed on cultured bovine aortic endothelial cells (BAEC). The results presented indicate that both IP3 and intracellular Ca2+ can modulate the activity of a Ca(2+)-selective channel found in the plasma membrane of these cells. Addition of 10 microM IP3 increased channel open probability (P(o)) from a control value of 0.12 +/- 0.05 to 0.7 +/- 0.13 at a constant intracellular Ca2+ of 1 nM in excised inside-out patches. D-Myo-inositol 1,3,4,5-tetrakisphosphate at 50 microM was ineffective in altering channel P(o). Channel activity declined after approximately 2 min in the continuous presence of IP3. Three to four minutes after addition of IP3, channel P(o) was reduced from 0.7 +/- 0.2 to 0.2 +/- 0.1, indicating that an additional regulator might be required to maintain channel activity in excised patches. The channel was reversibly blocked by application of 1 microgram/ml heparin to the intracellular side of inside-out patches. This Ca(2+)-selective channel is indistinguishable from the depletion-activated Ca2+ channel we have previously described in BAEC.


Sign in / Sign up

Export Citation Format

Share Document