scholarly journals AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ying-chen Xia ◽  
Jian-hua Zha ◽  
Yong-Hua Sang ◽  
Hui Yin ◽  
Guo-qiu Xu ◽  
...  

AbstractActivation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.

2018 ◽  
Vol 51 (5) ◽  
pp. 2324-2340 ◽  
Author(s):  
Xiuyuan Li ◽  
Zenglei Zhang ◽  
Hua Jiang ◽  
Qiang Li ◽  
Ruliang Wang ◽  
...  

Background/Aims: Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers, however its role in non-small cell lung cancer (NSCLC) tumorigenesis is not well understood. The aim of this study is to identify the expression level of circPVT1 in NSCLC and further investigated its functional relevance with NSCLC progression both in vitro and in vivo. Methods: Quantative real-time PCR was used for the measurement of circPVT1 in NSCLC specimens and cell lines. Fluorescence in situ hybridization analysis (FISH) assay was used for the identification of sublocation of circPVT1 in NSCLC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to verify the binding of c-Fos at circPVT1 promoter region, and the direct interaction between circPVT1 and miR-125b. Gain- or loss-function assays were performed to evaluate the effects of circPVT1 on cell proliferation and invasion. Western blot and immunohistochemistry assays were performed to detect the protein levels involved in E2F2 pathway. Results: We found that circPVT1 was upregulated in NSCLC specimens and cells. The transcription factor c-Fos binded to the promoter region of circPVT1, resulting in the overexpression of circPVT1 in NSCLC. Knockdown of circPVT1 suppressed NSCLC cell proliferation, migration and invasion, and increased apoptosis. In addition, circPVT1 mediated NSCLC progression via the regulation of E2F2 signaling pathway. More importantly, circPVT1 was predominantly abundant in the cytoplasm of NSCLC cells, and circPVT1 could serve as a competing endogenous RNA to regulate E2F2 expression and tumorigenesis in a miR-125b-dependent manner, which is further verified by using an in vivo xenograft model. Conclusion: circPVT1 promotes NSCLC cell growth and invasion, and may serve as a promising therapeutic target for NSCLC patients. Therefore, silence of circPVT1 could be a future direction to develop a novel treatment strategy.


2015 ◽  
Vol 11 (7) ◽  
pp. 2051-2059 ◽  
Author(s):  
Junchao Huang ◽  
Chengchao Sun ◽  
Suqing Wang ◽  
Qiqiang He ◽  
Dejia Li

Anti-miR-10b inhibits lung cancer cell growth and induces apoptosis in vitro and in vivo.


2020 ◽  
Author(s):  
Damiano Scopetti ◽  
Danilo Piobbico ◽  
Cinzia Brunacci ◽  
Stefania Pieroni ◽  
Guido Bellezza ◽  
...  

Abstract Background Non-Small Cell Lung Cancer accounts for 80–85% of all forms of Lung Cancer as leading cause of cancer-related death in human. Despite remarkable advances in the diagnosis and therapy of Lung Cancer, no significant improvements have thus far been achieved in terms of patients’ prognosis. Here, we investigated the role of INSL4 – a member of the relaxin family –in NSCLC.Methods We permanently overexpressed INSL4 in NSCLC cells in vitro to analyse the growth rate and the tumourigenic features. We further investigated the signalling pathways engaged in INSL4 overexpressing cells and the tumour growth ability by studying the tumour development in a patient derived tumour xenograft mouse model. Results We found a cell growth promoting effect by INSL4 overexpression in vitro in H1299 cells and in vivo in NOD/SCID mice. Surprisingly, in NSCLC-A549 cells, stable INSL4 overexpression has not showed similar effect, despite has an INSL4-mRNA expressed up to 22.000 fold more respect H1299. The INSL4-mRNA analysis of eight different NSCLC-derived cell lines, has revealed a great discrepancy between the amount of INSL4-mRNA and specific protein. Notably, similar result has been observed in studied NSCLC patients analysing and comparing INSL4 mRNA and protein expression. However, in a cohort of NSCLC patients, we found a significant inverse correlation between INSL4 expression and Overall Survival.Conclusions By combining the results from the in vitro and in vivo models and in silico analysis in patients whose NSCLCs adenocarcinoma spontaneously expressed high levels of INSL4 our results suggest that epigenetic modifications that affect INSL4 does not allow to assess precision therapy in selected patients without consider protein INSL4 amount.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22100-e22100
Author(s):  
T. Hayashi ◽  
H. Tao ◽  
M. Jida ◽  
T. Kubo ◽  
H. Yamamoto ◽  
...  

e22100 Background: Cancer stem cell (CSCs) are believed to play important roles in tumor development, recurrence or metastasis. Identification of CSCs may have a therapeutic significance. CD133 expression has been shown on a minority of various human cancer cells with high capability of self-renewal and proliferation. Therefore, CD133 is thought to be one of possible markers for CSCs. Regarding human lung cancers, the existence, prevalence or roles of CD133 positive cells has not been fully understood. Methods: We examined CD133 mRNA by quantitative real-time PCR and sorted CD133-positive cells by fluorescence-activated cell sorting (FACS) using human small cell lung cancer(SCLC) and non-small cell lung cancer (NSCLC) cell lines. We evaluated differences of cell proliferation between CD133-positive and -negative cells by MTS assay in vitro and by subcutaneous injection for non- obese diabetic/severe combined immunodeficiency (NOD/SCID) mice in vivo. Results: CD133 expression was almost restricted in SCLC cell lines. CD133 mRNA expression or CD133-positive cell population was scarcely observed in NSCLC cell lines. In two SCLC cell lines examined (NCI-H82 and NCI-H69), CD133 positive cells had higher tumorgenicity both in vivo and in vitro than NSCLC cell lines. Conclusions: The expression status of CD133 is totally different between NSCLCs and SCLCs, probably reflecting the difference of these progenitor cells. Our results indicate that CD133-positive cells in SCLC cell are responsible for tumor growth. However, in view of their wide prevalence, CD133-positive cells do not seem to be a candidate for CSCs, at least in cell lines. To investigate the molecular and functional characteristics of CD133-positive cells may lead to a new therapeutic strategy for human lung cancers, especially for SCLCs. No significant financial relationships to disclose.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Tong Zhou ◽  
Yong-Hua Sang ◽  
Shang Cai ◽  
Chun Xu ◽  
Min-hua Shi

AbstractPOLRMT (RNA polymerase mitochondrial) is responsible for the transcription of mitochondrial genome encoding key components of oxidative phosphorylation. This process is important for cancer cell growth. The current study tested expression and potential functions of POLRMT in non-small cell lung cancer (NSCLC). TCGA cohorts and the results from the local lung cancer tissues showed that POLRMT is overexpressed in human lung cancer tissues. In both primary human NSCLC cells and A549 cells, POLRMT silencing (by targeted lentiviral shRNAs) or knockout (through CRSIPR/Cas9 gene editing method) potently inhibited cell viability, proliferation, migration, and invasion, and induced apoptosis activation. On the contrast, ectopic overexpression of POLRMT using a lentiviral construct accelerated cell proliferation and migration in NSCLC cells. The mtDNA contents, mRNA levels of mitochondrial transcripts, and subunits of respiratory chain complexes, as well as S6 phosphorylation, were decreased in POLRMT-silenced or -knockout NSCLC cells, but increased after ectopic POLRMT overexpression. In vivo, intratumoral injection of POLRMT shRNA adeno-associated virus (AAV) potently inhibited NSCLC xenograft growth in severe combined immune deficiency mice. The mtDNA contents, mRNA levels of mitochondria respiratory chain complex subunits, and S6 phosphorylation were decreased in POLRMT shRNA AAV-injected NSCLC xenograft tissues. These results show that POLRMT is a novel and important oncogene required for NSCLC cell growth in vitro and in vivo.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kelin She ◽  
Wensheng Yang ◽  
Mengna Li ◽  
Wei Xiong ◽  
Ming Zhou

AimBone metastasis is the major reason for the poor prognosis and high mortality rate of non-small cell lung cancer (NSCLC) patients. This study explored the function and underlying mechanism of Fas apoptotic inhibitory molecule 2 (FAIM2) in the bone metastasis of NSCLC.MethodsSamples of normal lung tissue and NSCLC tissue (with or without bone metastasis) were collected and analyzed for FAIM2 expression. HARA cells with FAIM2 overexpression and HARA-B4 cells with FAIM2 knockdown were tested for proliferation, migration, invasion, anoikis, and their ability to adhere to osteoblasts. Next, whether FAIM2 facilitates bone metastasis by regulating the epithelial mesenchymal transformation (EMT) process and Wnt/β-catenin signaling pathway were investigated. Finally, an in vivo model of NSCLC bone metastasis was established and used to further examine the influence of FAIM2 on bone metastasis.ResultsFAIM2 was highly expressed in NSCLC tissues and NSCLC tissues with bone metastasis. FAIM2 expression was positively associated with the tumor stage, lymph node metastasis, bone metastasis, and poor prognosis of NSCLC. FAIM2 upregulation promoted HARA cell proliferation, migration, and invasion, but inhibited cell apoptosis. FAIM2 knockdown in HARA-B4 cells produced the opposite effects. HARA-B4 cells showed a stronger adhesive ability to osteocytes than did HARA cells. FAIM2 was found to be related to the adhesive ability of HARA and HARA-B4 cells to osteocytes. FAIM2 facilitated bone metastasis by regulating the EMT process and Wnt/β-catenin signaling pathway. Finally, FAIM2 was found to participate in regulating NSCLC bone metastasis in vivo.ConclusionsFAIM2 promoted NSCLC cell growth and bone metastasis by regulating the EMT process and Wnt/β-catenin signaling pathway. FAIM2 might be useful for diagnosing and treating NSCLC bone metastases.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Song ◽  
Liping Peng ◽  
Shucheng Hua ◽  
Xiaoping Li ◽  
Lianjun Ma ◽  
...  

MicroRNAs (miRNAs or miRs) regulate gene expression at the posttranscriptional level and are involved in many biological processes such as cell proliferation and migration, stem cell differentiation, inflammation, and apoptosis. In particular, miR-144-3p is downregulated in various cancers, and its overexpression inhibits the proliferation and metastasis of cancer cells. However, the role of miR-144-5p in non-small-cell lung cancer (NSCLC), especially radiosensitivity, is unknown. In this study, we found that miR-144-5p was downregulated in NSCLC clinical specimens as well as NSCLC cell lines exposed to radiation. Enhanced expression of miR-144-5p promoted the radiosensitivity of NSCLC cells in vitro and A549 cell mouse xenografts in vivo. Furthermore, we identified activating transcription factor 2 (ATF2) as the direct and functional target of miR-144-5p using integrated bioinformatics analysis and a luciferase reporter assay. In addition, restoration of ATF2 expression inhibited miR-144-5p-induced NSCLC cell sensitivity to radiation in vitro and in vivo. Our findings suggest that deregulation of the miR-144-5p/ATF2 axis plays an important role in NSCLC cell radiosensitivity, thus representing a new potential therapeutic target for NSCLC.


2020 ◽  
Vol 48 (10) ◽  
pp. 030006052093971
Author(s):  
Yanyan Liu ◽  
Junmei Jia ◽  
Bin Song ◽  
Haile Qiu ◽  
Gang Liang ◽  
...  

Objective In the present investigation, we evaluated the effects of microRNA-365 (miR-365) on non-small-cell lung cancer (NSCLC) cell metastasis and invasion in patients with bone metastasis of lung cancer. Methods Blood samples from patients with NSCLC and healthy controls and the A549 adenocarcinoma cell line were included in this study. Quantitative real-time PCR and microarray were performed on blood samples. The MTT assay, luciferase reporter assay, Transwell assay, ELISA, and western blot were performed to evaluate expression of associated factors. Results Expression of miR-365 was reduced in patients with bone metastasis of NSCLC. Downregulation of miR-365 promoted cell growth, metastasis, and invasion of NSCLC. Upregulation of miR-365 reduced cell growth, metastasis, and invasion of NSCLC. Downregulation of miR-365 induced expression of NKX homeobox-1 (NKX2-1), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and p-Akt proteins in an in vitro model of NSCLC. Inhibition of NKX2-1 reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC. Activation of EGFR reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC. Conclusions The study established that the serum miR-365 suppresses NSCLC cell metastasis and invasion in patients with bone metastasis of lung cancer via EGFR/PI3K through NKX2-1.


2014 ◽  
Vol 8 (6) ◽  
pp. 2806-2810 ◽  
Author(s):  
DEZHI LIU ◽  
LING YAN ◽  
LAN WANG ◽  
WEICHENG TAI ◽  
WEILI WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document