scholarly journals A costimulatory molecule-related signature in regard to evaluation of prognosis and immune features for clear cell renal cell carcinoma

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoliang Hua ◽  
Shengdong Ge ◽  
Jiong Zhang ◽  
Haibing Xiao ◽  
Sheng Tai ◽  
...  

AbstractCostimulatory molecules have been proven to enhance antitumor immune responses, but their roles in clear cell renal cell carcinoma (ccRCC) remain unexplored. In this study, we aimed to explore the gene expression profiles of costimulatory molecule genes in ccRCC and construct a prognostic signature to improve treatment decision-making and clinical outcomes. We performed the first comprehensive analysis of costimulatory molecules in patients with ccRCC and identified 13 costimulatory molecule genes with prognostic values and diagnostic values. Consensus clustering analysis based on these 13 costimulatory molecular genes showed different distribution patterns and prognostic differences for the two clusters identified. Then, a costimulatory molecule-related signature was constructed based on these 13 costimulatory molecular genes, and validated in an external dataset, showing good performance for predicting a patient’s prognosis. The signature was an independent risk factor for ccRCC patients and was significantly correlated with patients’ clinical factors, which could be used as a complement for clinical factors. In addition, the signature was associated with the tumor immune microenvironment and the response to immunotherapy. Patients identified as high-risk based on our signature exhibited a high mutation frequency, a high level of immune cell infiltration, and an immunosuppressive microenvironment. High-risk patients tended to have high cytolytic activity scores and immunophenoscore of CTLA4 and PD1/PD-L1/PD-L2 blocker than low-risk patients, suggesting these patients may be more suitable for immunotherapy. Therefore, our signature could provide clinicians with prognosis predictions and help guide treatment for ccRCC patients.

2014 ◽  
Vol 110 (10) ◽  
pp. 2537-2543 ◽  
Author(s):  
J Sanjmyatav ◽  
S Matthes ◽  
M Muehr ◽  
D Sava ◽  
M Sternal ◽  
...  

2013 ◽  
Vol 189 (4S) ◽  
Author(s):  
Jimsgene Sanjmyatav ◽  
Sophie Matthes ◽  
Martin Mühr ◽  
Doriana Sava ◽  
Maria Sternal ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Yue Wu ◽  
Xi Zhang ◽  
Xian Wei ◽  
Huan Feng ◽  
Bintao Hu ◽  
...  

Mitochondria not only are the main source of ATP synthesis but also regulate cellular redox balance and calcium homeostasis. Its dysfunction can lead to a variety of diseases and promote cancer and metastasis. In this study, we aimed to explore the molecular characteristics and prognostic significance of mitochondrial genes (MTGs) related to oxidative stress in clear cell renal cell carcinoma (ccRCC). A total of 75 differentially expressed MTGs were analyzed from The Cancer Genome Atlas (TCGA) database, including 46 upregulated and 29 downregulated MTGs. Further analysis screened 6 prognostic-related MTGs (ACAD11, ACADSB, BID, PYCR1, SLC25A27, and STAR) and was used to develop a signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curve analyses showed that the signature could accurately distinguish patients with poor prognosis and had good individual risk stratification and prognostic potential. Stratified analysis based on different clinical variables indicated that the signature could be used to evaluate tumor progression in ccRCC. Moreover, we found that there were significant differences in immune cell infiltration between the low- and high-risk groups based on the signature and that ccRCC patients in the low-risk group responded better to immunotherapy than those in the high-risk group (46.59% vs 35.34%, P = 0.008 ). We also found that the expression levels of these prognostic MTGs were significantly associated with drug sensitivity in multiple ccRCC cell lines. Our study for the first time elucidates the biological function and prognostic significance of mitochondrial molecules associated with oxidative stress and provides a new protocol for evaluating treatment strategies targeting mitochondria in ccRCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huiying Yang ◽  
Xiaoling Xiong ◽  
Hua Li

BackgroundClear cell renal cell carcinoma (ccRCC) is a kind of frequently diagnosed cancer, leading to high death rate in patients. Genomic instability (GI) is regarded as playing indispensable roles in tumorigenesis and impacting the prognosis of patients. The aberrant regulation of long non-coding RNAs (lncRNAs) is a main cause of GI. We combined the somatic mutation profiles and expression profiles to identify GI derived lncRNAs (GID-lncRNAs) in ccRCC and developed a GID-lncRNAs based risk signature for prognosis prediction and medication guidance.MethodsWe decided cases with top 25% cumulative number of somatic mutations as genomically unstable (GU) group and last 25% as genomically stable (GS) group, and identified differentially expressed lncRNAs (GID-lncRNAs) between two groups. Then we developed the risk signature with all overall survival related GID-lncRNAs with least absolute shrinkage and selection operator (LASSO) Cox regression. The functions of the GID-lncRNAs were partly interpreted by enrichment analysis. We finally validated the effectiveness of the risk signature in prognosis prediction and medication guidance.ResultsWe developed a seven-lncRNAs (LINC00460, AL139351.1, AC156455.1, AL035446.1, LINC02471, AC022509.2, and LINC01606) risk signature and divided all samples into high-risk and low-risk groups. Patients in high-risk group were in more severe clinicopathologic status (higher tumor grade, pathological stage, T stage, and more metastasis) and were deemed to have less survival time and lower survival rate. The efficacy of prognosis prediction was validated by receiver operating characteristic analysis. Enrichment analysis revealed that the lncRNAs in the risk signature mainly participate in regulation of cell cycle, DNA replication, material metabolism, and other vital biological processes in the tumorigenesis of ccRCC. Moreover, the risk signature could help assess the possibility of response to precise treatments.ConclusionOur study combined the somatic mutation profiles and the expression profiles of ccRCC for the first time and developed a GID-lncRNAs based risk signature for prognosis predicting and therapeutic scheme deciding. We validated the efficacy of the risk signature and partly interpreted the roles of the seven lncRNAs composing the risk signature in ccRCC. Our study provides novel insights into the roles of genomic instability derived lncRNAs in ccRCC.


2018 ◽  
Vol 199 (4S) ◽  
Author(s):  
Mohit Gupta ◽  
Hiten Patel ◽  
Alice Semerjian ◽  
Michael Gorin ◽  
Michael Johnson ◽  
...  

2021 ◽  
Vol 22 (S10) ◽  
Author(s):  
Eskezeia Y. Dessie ◽  
Jeffrey J. P. Tsai ◽  
Jan-Gowth Chang ◽  
Ka-Lok Ng

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinoma and patients at advanced stage showed poor survival rate. Despite microRNAs (miRNAs) are used as potential biomarkers in many cancers, miRNA biomarkers for predicting the tumor stage of ccRCC are still limitedly identified. Therefore, we proposed a new integrated machine learning (ML) strategy to identify a novel miRNA signature related to tumor stage and prognosis of ccRCC patients using miRNA expression profiles. A multivariate Cox regression model with three hybrid penalties including Least absolute shrinkage and selection operator (Lasso), Adaptive lasso and Elastic net algorithms was used to screen relevant prognostic related miRNAs. The best subset regression (BSR) model was used to identify optimal prognostic model. Five ML algorithms were used to develop stage classification models. The biological significance of the miRNA signature was analyzed by utilizing DIANA-mirPath. Results A four-miRNA signature associated with survival was identified and the expression of this signature was strongly correlated with high risk patients. The high risk patients had unfavorable overall survival compared with the low risk group (HR = 4.523, P-value = 2.86e−08). Univariate and multivariate analyses confirmed independent and translational value of this predictive model. A combined ML algorithm identified six miRNA signatures for cancer staging prediction. After using the data balancing algorithm SMOTE, the Support Vector Machine (SVM) algorithm achieved the best classification performance (accuracy = 0.923, sensitivity = 0.927, specificity = 0.919, MCC = 0.843) when compared with other classifiers. Furthermore, enrichment analysis indicated that the identified miRNA signature involved in cancer-associated pathways. Conclusions A novel miRNA classification model using the identified prognostic and tumor stage associated miRNA signature will be useful for risk and stage stratification for clinical practice, and the identified miRNA signature can provide promising insight to understand the progression mechanism of ccRCC.


Sign in / Sign up

Export Citation Format

Share Document