scholarly journals Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities

Author(s):  
Lot Snijders Blok ◽  
Arianna Vino ◽  
Joery den Hoed ◽  
Hunter R. Underhill ◽  
Danielle Monteil ◽  
...  

Abstract Purpose Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described. Methods We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants. Results We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein. Conclusion Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongjian Qi ◽  
Haicang Zhang ◽  
Yige Zhao ◽  
Chen Chen ◽  
John J. Long ◽  
...  

AbstractAccurate pathogenicity prediction of missense variants is critically important in genetic studies and clinical diagnosis. Previously published prediction methods have facilitated the interpretation of missense variants but have limited performance. Here, we describe MVP (Missense Variant Pathogenicity prediction), a new prediction method that uses deep residual network to leverage large training data sets and many correlated predictors. We train the model separately in genes that are intolerant of loss of function variants and the ones that are tolerant in order to take account of potentially different genetic effect size and mode of action. We compile cancer mutation hotspots and de novo variants from developmental disorders for benchmarking. Overall, MVP achieves better performance in prioritizing pathogenic missense variants than previous methods, especially in genes tolerant of loss of function variants. Finally, using MVP, we estimate that de novo coding variants contribute to 7.8% of isolated congenital heart disease, nearly doubling previous estimates.


2021 ◽  
pp. jmedgenet-2020-107462
Author(s):  
Natalie B Tan ◽  
Alistair T Pagnamenta ◽  
Matteo P Ferla ◽  
Jonathan Gadian ◽  
Brian HY Chung ◽  
...  

PurposeBinding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gβγ units. Human diseases have been reported for all five Gβ proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort.MethodsWe discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants.ResultsWe identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction.ConclusionMissense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


2021 ◽  
Author(s):  
Sathiya N. Manivannan ◽  
Jolien Roovers ◽  
Noor Smal ◽  
Candace T. Myers ◽  
Dilsad Turkdogan ◽  
...  

FZR1, which encodes the Cdh1 subunit of the Anaphase Promoting Complex, plays an important role in neurodevelopment, both through the control of the cell cycle and through its multiple functions in post-mitotic neurons. In this study, the evaluation of 250 unrelated patients with developmental epileptic encephalopathies (DEE) and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Two variants led to the same amino acid change. All individuals had a DEE with childhood-onset generalized epilepsy, intellectual disability, mild ataxia, and normal head circumference. Two individuals were diagnosed with the DEE subtype Myoclonic Atonic Epilepsy (MAE). We provide gene burden testing using two independent statistical tests to support FZR1 association with DEE. Further, we provide functional evidence that the missense variants are loss-of-function (LOF) alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homolog fzr and overexpression studies, we show that patient variants do not support proper neurodevelopment. Along with a recent report of a patient with neonatal-onset DEE with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and DEE, and expands the associated phenotype. We conclude that heterozygous LOF of FZR1 leads to DEE associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay, and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed MAE/DEE cases.


2021 ◽  
Author(s):  
Haicang Zhang ◽  
Michelle S. Xu ◽  
Wendy K. Chung ◽  
Yufeng Shen

AbstractAccurate prediction of damaging missense variants is critically important for interpretating genome sequence. While many methods have been developed, their performance has been limited. Recent progress in machine learning and availability of large-scale population genomic sequencing data provide new opportunities to significantly improve computational predictions. Here we describe gMVP, a new method based on graph attention neural networks. Its main component is a graph with nodes capturing predictive features of amino acids and edges weighted by coevolution strength, which enables effective pooling of information from local protein sequence context and functionally correlated distal positions. Evaluated by deep mutational scan data, gMVP outperforms published methods in identifying damaging variants in TP53, PTEN, BRCA1, and MSH2. Additionally, it achieves the best separation of de novo missense variants in neurodevelopmental disorder cases from the ones in controls. Finally, the model supports transfer learning to optimize gain- and loss-of-function predictions in sodium and calcium channels. In summary, we demonstrate that gMVP can improve interpretation of missense variants in clinical testing and genetic studies.


2020 ◽  
Author(s):  
Ilaria Mannucci ◽  
Nan Cher Yeo ◽  
Hannes Huber ◽  
Jaclyn Murry ◽  
Jeff Abramson ◽  
...  

Background We aimed to define the clinical and mutational spectrum, and to provide novel molecular insights into DHX30-associated neurodevelopmental disorder. Methods Clinical and genetic data from affected individuals were collected through family support group, GeneMatcher and our network of collaborators. Novel missense variants were investigated by in-vitro and in-vivo assays. These analyses included investigation of stress granule formation, global translation, ATPase and helicase activity, as well as the effect of selected variants on embryonal development in Zebrafish. Results We identified altogether 25 previously unreported individuals. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30 and global translation, trigger stress granule formation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented a milder clinical course, similar to an individual bearing a de novo mosaic missense variant within HCM. Late-onset severe ataxia was observed in an individual with a de novo missense variant within the ratchet-like domain, and early-onset lethal epileptic encephalopathy in an individual with a homozygous missense variant within the helicase core region but not within a HCM. We report ten novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. Functional analyses confirmed pathogenicity of all missense variants, and suggest the existence of clinically distinct subtypes that correlate with their location and nature. Moreover, we established here DHX30 as an ATP-dependent RNA helicase. Conclusions Our study highlights the usefulness of social media in order to define novel Mendelian disorders, and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected, clinicians, molecular genetics diagnostic laboratories and research laboratories.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kimiko Ueda ◽  
Atsushi Araki ◽  
Atsushi Fujita ◽  
Naomichi Matsumoto ◽  
Tomoko Uehara ◽  
...  

AbstractLessel et al. reported a novel neurodevelopmental disorder with severe motor impairment and absent language (NEDMIAL) in 12 individuals and identified six different de novo heterozygous missense variants in DHX30. The other clinical features included muscular hypotonia, feeding difficulties, brain anomalies, autistic features, sleep disturbances, and joint hypermobility. We report a Japanese adult with a novel missense variant and two girls with de novo missense variants in DHX30.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009835
Author(s):  
Yong Shen ◽  
Rick Li ◽  
Kristian Teichert ◽  
Kara E. Montbleau ◽  
Jeffrey M. Verboon ◽  
...  

Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia. BCL11A has been identified as a key regulator of HbF silencing, although its precise mechanisms of action remain incompletely understood. Recent studies have identified pathogenic mutations that cause heterozygous loss-of-function of BCL11A and result in a distinct neurodevelopmental disorder that is characterized by persistent HbF expression. While the majority of cases have deletions or null mutations causing haploinsufficiency of BCL11A, several missense variants have also been identified. Here, we perform functional studies on these variants to uncover specific liabilities for BCL11A’s function in HbF silencing. We find several mutations in an N-terminal C2HC zinc finger that increase proteasomal degradation of BCL11A. We also identify a distinct C-terminal missense variant in the fifth zinc finger domain that we demonstrate causes loss-of-function through disruption of DNA binding. Our analysis of missense variants causing loss-of-function in vivo illuminates mechanisms by which BCL11A silences HbF and also suggests potential therapeutic avenues for HbF induction to treat sickle cell disease and β-thalassemia.


2019 ◽  
Vol 28 (17) ◽  
pp. 2937-2951 ◽  
Author(s):  
Lina Liang ◽  
Xia Li ◽  
Sébastien Moutton ◽  
Samantha A Schrier Vergano ◽  
Benjamin Cogné ◽  
...  

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Jeremy W. Prokop ◽  
Caleb P. Bupp ◽  
Austin Frisch ◽  
Stephanie M. Bilinovich ◽  
Daniel B. Campbell ◽  
...  

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 663
Author(s):  
Stijn van de Plassche ◽  
Arjan PM de Brouwer

MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.


Sign in / Sign up

Export Citation Format

Share Document