scholarly journals Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaushik Parida ◽  
Gurunathan Thangavel ◽  
Guofa Cai ◽  
Xinran Zhou ◽  
Sangbaek Park ◽  
...  
2021 ◽  
pp. 2011264
Author(s):  
Xiaolong Cheng ◽  
Ruiwen Shao ◽  
Dongjun Li ◽  
Hai Yang ◽  
Ying Wu ◽  
...  

2021 ◽  
pp. 2100039
Author(s):  
Jiaqing Zhu ◽  
Yu Cheng ◽  
Saifei Hao ◽  
Zhong Lin Wang ◽  
Ning Wang ◽  
...  

2021 ◽  
pp. 2100135
Author(s):  
Yu Zhang ◽  
Yongjia Yu ◽  
Xiaojuan Zhao ◽  
Xin Yang ◽  
Ran Yu ◽  
...  

2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Molla Hasan ◽  
Imrhankhan Shajahan ◽  
Manesh Gopinadhan ◽  
Jittisa Ketkaew ◽  
Aaron Anesgart ◽  
...  

We report the tuning of surface wetting through sacrificial nanoimprint lithography (SNIL). In this process, grown ZnO nanomaterials are transferred by imprint into a metallic glass (MG) and an elastomeric material, and then etched to impart controlled surface roughness. This process increases the hydrophilicity and hydrophobicity of both surfaces, the Pt57.5Cu14.7Ni5.3P22.5 MG and thermoplastic elastomer (TPE), respectively. The growth conditions of the ZnO change the characteristic length scale of the roughness, which in turn alters the properties of the patterned surface. The novelty of this approach includes reusability of templates and that it is able to create superhydrophilic and superhydrophobic surfaces in a manner compatible with the fabrication of macroscopic three-dimensional (3D) parts. Because the wettability is achieved by only modifying topography, without using any chemical surface modifiers, the prepared surfaces are relatively more durable.


2020 ◽  
Vol 117 (34) ◽  
pp. 20397-20403
Author(s):  
Dong Meng ◽  
Jonathan Lee Yang ◽  
Chengyi Xiao ◽  
Rui Wang ◽  
Xiaofei Xing ◽  
...  

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.


2020 ◽  
Vol 117 (44) ◽  
pp. 27204-27210 ◽  
Author(s):  
Yong Hu ◽  
Zipeng Guo ◽  
Andrew Ragonese ◽  
Taishan Zhu ◽  
Saurabh Khuje ◽  
...  

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field–assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 519-530
Author(s):  
Shubham Sharma ◽  
Jujhar Singh ◽  
Harish Kumar ◽  
Abhinav Sharma ◽  
Vivek Aggarwal ◽  
...  

This research work has been completed by concentrating on the structure of inserts for foot orthosis fabricated by utilizing rapid prototyping technology. Thermoplastic elastomer and thermoplastic polyurethane are the most commonly used materials that are being used in customized three-dimensional printed orthotic insoles, which are comfortable and prevent the user in many foot disorders. Thermo-softening viscoelastic polymers, explicitly Filaflex and Ninjaflex, have been printed by utilizing Flash Forge three-dimensional printers to evaluate the mechanical properties of specimens with alterations of the percentage rate fill-up design replicas. The results are compared on the basis of hardness test, flexural/bending test, and tensile test using Durometer and Universal Testing Machine (UTM). It has also been observed that the most significant effecting factor is infill density.


2019 ◽  
Vol 11 (5) ◽  
pp. 5022-5036 ◽  
Author(s):  
Anirban Maitra ◽  
Sarbaranjan Paria ◽  
Sumanta Kumar Karan ◽  
Ranadip Bera ◽  
Aswini Bera ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 79 ◽  
pp. 105394
Author(s):  
Dan Yang ◽  
Yufeng Ni ◽  
Hao Su ◽  
Yuxiang Shi ◽  
Qiming Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document