scholarly journals Noncovalent π-stacked robust topological organic framework

2020 ◽  
Vol 117 (34) ◽  
pp. 20397-20403
Author(s):  
Dong Meng ◽  
Jonathan Lee Yang ◽  
Chengyi Xiao ◽  
Rui Wang ◽  
Xiaofei Xing ◽  
...  

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.

CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


2019 ◽  
Vol 6 (9) ◽  
pp. 2528-2538
Author(s):  
Mengxia Li ◽  
Ying Dai ◽  
Xinmei Pei ◽  
Wen Chen

A three-dimensional HrGO with a hierarchically porous structure was successfully synthesized as a sulfur-hosting material with high sulfur loading for high-performance lithium–sulfur batteries.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46336-46343 ◽  
Author(s):  
Chenting Cai ◽  
Yue Zhang ◽  
Xueting Zou ◽  
Rongchun Zhang ◽  
Xiaoliang Wang ◽  
...  

A rapid self-healing and recyclable high-performance crosslinked epoxy resin (ER)/graphene nanocomposite is reported by simultaneously incorporating thermally reversible Diels–Alder (DA) covalent bonds and multiple-responsive graphene into the ER matrix.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 815 ◽  
Author(s):  
Sanyin Qu ◽  
Chen Ming ◽  
Qin Yao ◽  
Wanheng Lu ◽  
Kaiyang Zeng ◽  
...  

The fundamental understanding of the influence of molecular structure on the carrier transport properties in the field of organic thermoelectrics (OTEs) is a big challenge since the carrier transport behavior in conducting polymers reveals average properties contributed from all carrier transport channels, including those through intra-chain, inter-chain, inter-grain, and hopping between disordered localized sites. Here, combining molecular dynamics simulations and experiments, we investigated the carrier transport properties of doped highly oriented poly(3-hexylthiophene) (P3HT) films with different side-chain regioregularity. It is demonstrated that the substitution of side chains can not only take effect on the carrier transport edge, but also on the dimensionality of the transport paths and as a result, on the carrier mobility. Conductive atomic force microscopy (C-AFM) study as well as temperature-dependent measurements of the electrical conductivity clearly showed ordered local current paths in the regular side chain P3HT films, while random paths prevailed in the irregular sample. Regular side chain substitution can be activated more easily and favors one-dimensional transport along the backbone chain direction, while the irregular sample presents the three-dimensional electron hopping behavior. As a consequence, the regular side chain P3HT samples demonstrated high carrier mobility of 2.9 ± 0.3 cm2/V·s, which is more than one order of magnitude higher than that in irregular side chain P3HT films, resulting in a maximum thermoelectric (TE) power factor of 39.1 ± 2.5 μW/mK2 at room temperature. These findings would formulate design rules for organic semiconductors based on these complex systems, and especially assist in the design of high performance OTE polymers.


2014 ◽  
Vol 2 (17) ◽  
pp. 2478-2482 ◽  
Author(s):  
Jing Liu ◽  
Ziming He ◽  
Jingwen Xue ◽  
Timothy Thatt Yang Tan

A free-standing chitosan/vacuum stripped graphene/polypyrrole scaffold with a hierarchical porous structure was demonstrated as a high performance dopamine sensing electrode.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 824
Author(s):  
Byunggeon Park ◽  
Young Jung ◽  
Jong Soo Ko ◽  
Jinhyoung Park ◽  
Hanchul Cho

Highly flexible and compressible porous polyurethane (PU) structures have effectively been applied in capacitive pressure sensors because of the good elastic properties of the PU structures. However, PU porous structure-based pressure sensors have been limited in practical applications owing to their low durability during pressure cycling. Herein, we report a flexible pressure sensor based on a three-dimensional porous structure with notable durability at a compressive pressure of 500 kPa facilitated by the use of a shape memory polymer (SMP). The SMP porous structure was fabricated using a sugar templating process and capillary effect. The use of the SMP resulted in the maintenance of the sensing performance for 100 cycles at 500 kPa; the SMP can restore its original shape within 30 s of heating at 80 °C. The pressure sensor based on the SMP exhibited a higher sensitivity of 0.0223 kPa−1 than a typical PU-based sensor and displayed excellent sensing performance in terms of stability, response time, and hysteresis. Additionally, the proposed sensor was used to detect shoe insole pressures in real time and exhibited remarkable durability and motion differentiation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengwei Lu ◽  
Ruyi Fang ◽  
Kun Wang ◽  
Zhen Xiao ◽  
G. Gnana kumar ◽  
...  

Selenium-sulfur solid solutions (Se1-xSx) are considered to be a new class of promising cathodic materials for high-performance rechargeable lithium batteries owing to their superior electric conductivity than S and higher theoretical specific capacity than Se. In this work, high-performance Li-Se1-xSx batteries employed freestanding cathodes by encapsulating Se1-xSx in a N-doped carbon framework with three-dimensional (3D) interconnected porous structure (NC@SWCNTs) are proposed. Se1-xSx is uniformly dispersed in 3D porous carbon matrix with the assistance of supercritical CO2 (SC-CO2) technique. Impressively, NC@SWCNTs host not only provides spatial confinement for Se1-xSx and efficient physical/chemical adsorption of intermediates, but also offers a highly conductive framework to facilitate ion/electron transport. More importantly, the Se/S ratio of Se1-xSx plays an important role on the electrochemical performance of Li- Se1-xSx batteries. Benefiting from the rationally designed structure and chemical composition, NC@[email protected] cathode exhibits excellent cyclic stability (632 mA h g−1 at 200 cycle at 0.2 A g−1) and superior rate capability (415 mA h g−1 at 2.0 A g−1) in carbonate-based electrolyte. This novel NC@[email protected] cathode not only introduces a new strategy to design high-performance cathodes, but also provides a new approach to fabricate freestanding cathodes towards practical applications of high-energy-density rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document