scholarly journals Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tianxiao Huan ◽  
Roby Joehanes ◽  
Ci Song ◽  
Fen Peng ◽  
Yichen Guo ◽  
...  

Abstract Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.

2021 ◽  
pp. 135245852110044
Author(s):  
Yuan Zhou ◽  
Gabriel Cuellar-Partida ◽  
Steve Simpson Yap ◽  
Xin Lin ◽  
Suzi Claflin ◽  
...  

Background: Genome-wide association studies (GWAS) have succeeded in identifying over 200 susceptibility loci for multiple sclerosis (MS). However, the potential functional variants and the mechanisms by which these loci affect MS risk remain largely unexplained. Objectives: We used summary data-based Mendelian randomisation to prioritise risk genes and infer potential biological mechanisms for MS risk loci. Methods: The data used consisted of DNA methylation ( n = 1980) QTL (mQTL) and gene expression ( n = 31,684) QTL (eQTL) derived from whole blood as well as MS GWAS summary statistics (14,802 cases, 26,703 controls). The findings were further evaluated using data derived from independent brain mQTL ( n = 1160) and eQTL ( n = 1194). Results: In whole blood, we identified two independent genomic loci (lincRNA: RP11-326C3.13 and TNFSF14) with consistent genome-wide significant pleiotropic associations across different omics layers. In brain tissue, a similar effect for the RP11-326C3.13 locus was observed but not for TNFSF14, indicating a potential tissue-specific effect for the TNFSF14 locus. Conclusion: We provide in silico evidence for the putative biological mechanisms by which the identified DNA methylation sites and target genes are functionally relevant to MS development in different tissues. Future research targeting these genes and DNA methylation sites will determine their roles in the pathophysiology of MS.


2017 ◽  
Author(s):  
Chen Yao ◽  
George Chen ◽  
Ci Song ◽  
Michael Mendelson ◽  
Tianxiao Huan ◽  
...  

SummaryIdentifying genetic variants associated with circulating protein concentrations (pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome’s causal role in disease and bridge a GWAS knowledge gap for hitherto unexplained SNP-disease associations. We conducted GWAS of 71 high-value proteins for cardiovascular disease in 6,861 Framingham Heart Study participants followed by external replication. We comprehensively mapped thousands of pQTLs, including functional annotations and clinical-trait associations, and created an integrated plasma-protein-QTL searchable database. We next identified 15 proteins with pQTLs coinciding with coronary heart disease (CHD)-related variants from GWAS or tested causal for CHD by Mendelian randomization; most of these proteins were associated with new-onset cardiovascular disease events in Framingham participants with long-term follow-up. Identifying pQTLs and integrating them with GWAS results yields insights into genes, proteins, and pathways that may be causally associated with disease and can serve as therapeutic targets for treatment and prevention.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Mark Ziemann ◽  
KN Harikrishnan ◽  
Ishant Khurana ◽  
Antony Kaspi ◽  
Samuel T Keating ◽  
...  

Abstract Despite recent progress in screening for genetic causes of cardiovascular disease using genome-wide association studies, identifying causative polymorphisms has not met initial expectations. This has led to interest in exploring the contribution of non-genetic factors in disease etiology. Elevated plasma homocysteine is an independent risk factor for cardiovascular disease but the mechanism for increased risk remains poorly understood. This study evaluates the clinical applicability of screening for genome-wide CpG methylation differences using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq). Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) was profiled. Differential methylation of genes implicated in hyperhomocysteinemia was observed in males correlating with homocysteine; namely CBS (cystathionine-beta-synthase) and MTHFR (methylenetetrahydrofolate reductase). In females, hypomethylation of the LDLR (low density lipoprotein receptor) and CELSR1 (cadherin, EGF LAG seven-pass G-type receptor 1) genes were observed in the hypertensive group (2 normal and 2 hypertensive individuals). While the number of clinical samples analysed is small, the findings of this evaluation suggest that MBD-seq is a suitable and sufficiently sensitive technology to determine methylation variability. The results presented warrant an expanded case-control study to determine the pathophysiological implications of DNA methylation for hyper-homocysteinemia.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Kyuto Sonehara ◽  
Yukinori Okada

AbstractGenome-wide association studies have identified numerous disease-susceptibility genes. As knowledge of gene–disease associations accumulates, it is becoming increasingly important to translate this knowledge into clinical practice. This challenge involves finding effective drug targets and estimating their potential side effects, which often results in failure of promising clinical trials. Here, we review recent advances and future perspectives in genetics-led drug discovery, with a focus on drug repurposing, Mendelian randomization, and the use of multifaceted omics data.


2020 ◽  
Vol 21 (16) ◽  
pp. 5717 ◽  
Author(s):  
Estefanía Lozano-Velasco ◽  
Diego Franco ◽  
Amelia Aranega ◽  
Houria Daimi

Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks


Rheumatology ◽  
2020 ◽  
Vol 59 (11) ◽  
pp. 3137-3146
Author(s):  
Chenfu Shi ◽  
Magnus Rattray ◽  
Anne Barton ◽  
John Bowes ◽  
Gisela Orozco

Abstract Psoriatic arthritis (PsA) is a complex disease where susceptibility is determined by genetic and environmental risk factors. Clinically, PsA involves inflammation of the joints and the skin, and, if left untreated, results in irreversible joint damage. There is currently no cure and the few treatments available to alleviate symptoms do not work in all patients. Over the past decade, genome-wide association studies (GWAS) have uncovered a large number of disease-associated loci but translating these findings into functional mechanisms and novel targets for therapeutic use is not straightforward. Most variants have been predicted to affect primarily long-range regulatory regions such as enhancers. There is now compelling evidence to support the use of chromatin conformation analysis methods to discover novel genes that can be affected by disease-associated variants. Here, we will review the studies published in the field that have given us a novel understanding of gene regulation in the context of functional genomics and how this relates to the study of PsA and its underlying disease mechanism.


Sign in / Sign up

Export Citation Format

Share Document