scholarly journals Control of the temporal and polarization response of a multimode fiber

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mickael Mounaix ◽  
Joel Carpenter

Abstract Control of the spatial and temporal properties of light propagating in disordered media have been demonstrated over the last decade using spatial light modulators. Most of the previous studies demonstrated spatial focusing to the speckle grain size, and manipulation of the temporal properties of the achieved focus. In this work, we demonstrate an approach to control the total temporal impulse response, not only at a single speckle grain but over all spatial degrees of freedom (spatial and polarization modes) at any arbitrary delay time through a multimode fiber. Global enhancement or suppression of the total light intensity exiting a multimode fibre is shown for arbitrary delays and polarization states. This work could benefit to applications that require pulse delivery in disordered media.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Delphine Coursault ◽  
Etienne Brasselet

Abstract Modality is a generic concept of wave-optics at the basis of optical information and communications. One of the challenges of photonics technologies based on optical orbital angular momentum consists in the production of a modal content for both the azimuthal and radial degrees of freedom. This basically requires shaping the complex amplitude of an incident light beam, which is usually made up from adaptive spatial light modulators or bespoke devices. Here, we report on the experimental attempt of a recent theoretical proposal [Opt. Lett. 42, 1966 (2017)] toward the production of various optical vortex modes of the Laguerre–Gaussian type relying on the spin–orbit interaction of light. This is done in the visible domain from optical elements made out of silica glass. The idea consists in exploiting the combined effects of azimuthally-varying geometric phase with that of radially-varying propagation features. The proposed approach can be readily extended to any wavelength as well as to other families of optical modes, although some dynamic phase problems remain to be solved to make it a turnkey technology.


1998 ◽  
Vol 536 ◽  
Author(s):  
A. B. Pevtsov ◽  
N. A. Feoktistov ◽  
V. G. Golubev

AbstractThin (<1000 Å) hydrogenated nanocrystalline silicon films are widely used in solar cells, light emitting diodes, and spatial light modulators. In this work the conductivity of doped and undoped amorphous-nanocrystalline silicon thin films is studied as a function of film thickness: a giant anisotropy of conductivity is established. The longitudinal conductivity decreases dramatically (by a factor of 109 − 1010) as the layer thickness is reduced from 1500 Å to 200 Å, while the transverse conductivity remains close to that of a doped a- Si:H. The data obtained are interpreted in terms of the percolation theory.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 288
Author(s):  
Suetying Ching ◽  
Chakming Chan ◽  
Jack Ng ◽  
Kokwai Cheah

Metals are commonly used in plasmonic devices because of their strong plasmonic property. However, such properties are not easily tuned. For applications such as spatial light modulators and beam steering, tunable plasmonic properties are essential, and neither metals nor other plasmonic materials possess truly tunable plasmonic properties. In this work, we show that the silver alloy silver–ytterbium (Ag-Yb) possesses tunable plasmonic properties; its plasmonic response strength can be adjusted as a function of Yb concentration. Such tunability can be explained in terms of the influence of Yb on bound charge and interaction of its dielectric with the dielectric of Ag. The change in transition characteristics progressively weakens Ag’s plasmonic properties. With a spectral ellipsometric measurement, it was shown that the Ag-Yb alloy thin film retains the properties of Ag with high transmission efficiency. The weakened surface plasmon coupling strength without dramatic change in the coupling wavelengths implies that the tunability of the Ag-Yb alloy is related to its volume ratio. The principle mechanism of the plasmonic change is theoretically explained using a model. This work points to a potential new type of tunable plasmonic material.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 204
Author(s):  
Di Wang ◽  
Yi-Wei Zheng ◽  
Nan-Nan Li ◽  
Qiong-Hua Wang

In this paper, a holographic system to suppress the speckle noise is proposed. Two spatial light modulators (SLMs) are used in the system, one of which is used for beam shaping, and the other is used for reproducing the image. By calculating the effective viewing angle of the reconstructed image, the effective hologram and the effective region of the SLM are calculated accordingly. Then, the size of the diffractive optical element (DOE) is calculated accordingly. The dynamic DOEs and effective hologram are loaded on the effective regions of the two SLMs, respectively, while the wasted areas of the two SLMs are performed with zero-padded operations. When the laser passes through the first SLM, the light can be modulated by the effective DOEs. When the modulated beam illuminates the second SLM which is loaded with the effective hologram, the image is reconstructed with better quality and lower speckle noise. Moreover, the calculation time of the hologram is reduced. Experiments indicate the validity of the proposed system.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Remington S. Ketchum ◽  
Pierre-Alexandre Blanche

Micro-electro mechanical systems (MEMS)-based phase-only spatial light modulators (PLMs) have the potential to overcome the limited speed of liquid crystal on silicon (LCoS) spatial light modulators (SLMs) and operate at speeds faster than 10 kHz. This expands the practicality of PLMs to several applications, including communications, sensing, and high-speed displays. The complex structure and fabrication requirements for large, 2D MEMS arrays with vertical actuation have kept MEMS-based PLMs out of the market in favor of LCoS SLMs. Recently, Texas Instruments has adapted its existing DMD technology for fabricating MEMS-based PLMs. Here, we characterize the diffraction efficiency for one of these PLMs and examine the effect of a nonlinear distribution of addressable phase states across a range of wavelengths and illumination angles.


Sign in / Sign up

Export Citation Format

Share Document