scholarly journals Dendritic inhibition differentially regulates excitability of dentate gyrus parvalbumin-expressing interneurons and granule cells

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Claudio Elgueta ◽  
Marlene Bartos

AbstractFast-spiking parvalbumin-expressing interneurons (PVIs) and granule cells (GCs) of the dentate gyrus receive layer-specific dendritic inhibition. Its impact on PVI and GC excitability is, however, unknown. By applying whole-cell recordings, GABA uncaging and single-cell-modeling, we show that proximal dendritic inhibition in PVIs is less efficient in lowering perforant path-mediated subthreshold depolarization than distal inhibition but both are highly efficient in silencing PVIs. These inhibitory effects can be explained by proximal shunting and distal strong hyperpolarizing inhibition. In contrast, GC proximal but not distal inhibition is the primary regulator of their excitability and recruitment. In GCs inhibition is hyperpolarizing along the entire somato-dendritic axis with similar strength. Thus, dendritic inhibition differentially controls input-output transformations in PVIs and GCs. Dendritic inhibition in PVIs is suited to balance PVI discharges in dependence on global network activity thereby providing strong and tuned perisomatic inhibition that contributes to the sparse representation of information in GC assemblies.

2021 ◽  
Author(s):  
Milad Afrasiabi ◽  
AKSHAY - GUPTA ◽  
Huaying Xu ◽  
Bogumil Swietek ◽  
Vijayalakshmi Santhakumar

Strong inhibitory synaptic gating of dentate gyrus granule cells (GCs), attributed largely to fast-spiking parvalbumin interneurons (PV-INs), is essential to maintain sparse network activity needed for dentate dependent behaviors. However, the contribution of PV-INs to basal and input driven sustained synaptic inhibition in GCs and semilunar granule cells (SGCs), a sparse morphologically distinct dentate projection neuron subtype are currently unknown. We find that although basal inhibitory postsynaptic currents (IPSCs) are more frequent in SGCs and optical activation of PV-INs elicited IPSCs in both GCs and SGCs, optical suppression of PV-INs failed to reduce IPSC frequency in either cell type. Amplitude and kinetics of IPSCs evoked by perforant path activation were not different between GCs and SGCs. However, the robust increase in sustained polysynaptic IPSCs elicited by paired afferent stimulation was lower in SGCs than in simultaneously recorded GCs. Optical suppression of PV-IN selectively reduced sustained IPSCs in SGCs but not in GCs. These results demonstrate that PV-INs, while contributing minimally to basal synaptic inhibition in both GCs and SGCs in slices, mediate sustained feedback inhibition selectively in SGCs. The temporally selective blunting of activity-driven sustained inhibitory gating of SGCs could support their preferential and persistent recruitment during behavioral tasks.


1998 ◽  
Vol 80 (1) ◽  
pp. 113-119 ◽  
Author(s):  
David N. Lieberman ◽  
Istvan Mody

Lieberman, David N. and Istvan Mody. Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells. J. Neurophysiol. 80: 113–119, 1998. Substance P (SP)–containing afferents and the NK-1 tachykinin receptor to which SP binds are present in the dentate gyrus of the rat; however, direct actions of SP on principal cells have not been demonstrated in this brain region. We have examined the effect of SP on N-methyl-d-aspartate (NMDA) channels from acutely isolated dentate gyrus granule cells of adult rat hippocampus to assess the ability of SP to regulate glutamatergic input. SP produces a robust enhancement of single NMDA channel function that is mimicked by the NK-1–selective agonist Sar9, Met(O2)11-SP. The SP-induced prolongation of NMDA channel openings is prevented by the selective NK-1 receptor antagonist (+)-(2 S,3 S)-3-(2-methoxybenzylamino)-2-phenylpiperidine (CP-99,994). Calcium influx or activation of protein kinase C were not required for the SP-induced increase in NMDA channel open durations. The dramatic enhancement of excitatory amino acid–mediated excitability by SP places this neuropeptide in a key position to gate activation of hippocampal network activity.


1999 ◽  
Vol 81 (2) ◽  
pp. 564-574 ◽  
Author(s):  
Ümit Sayin ◽  
Paul Rutecki ◽  
Thomas Sutula

NMDA-dependent currents in granule cells of the dentate gyrus contribute to induction but not permanence of kindling. Single-electrode voltage-clamp techniques and bath application of the N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV) were used to study the time course of seizure-induced alterations in NMDA-dependent synaptic currents in granule cells of the dentate gyrus in hippocampal slices from kindled and normal rats. In agreement with previous studies, granule cells from kindled rats examined within 1 wk after the last of 3 or 30–35 generalized tonic-clonic (class V) seizures demonstrated an increase in the NMDA receptor–dependent component of the perforant path–evoked synaptic current. Within 1 wk of the last kindled seizure, NMDA-dependent charge transfer underlying the perforant path–evoked current was increased by 63–111% at a holding potential of −30 mV. In contrast, the NMDA-dependent component of the perforant-evoked current in granule cells examined at 2.5–3 mo after the last of 3 or 90–120 class V seizures did not differ from age-matched controls. Because the seizure-induced increases in NMDA-dependent synaptic currents declined toward control values during a time course of 2.5–3 mo, increases in NMDA-dependent synaptic transmission cannot account for the permanent susceptibility to evoked and spontaneous seizures induced by kindling. The increase in NMDA receptor–dependent transmission was associated with the induction of kindling but was not responsible for the maintenance of the kindled state. The time course of alterations in NMDA-dependent synaptic current and the dependence of the progression of kindling and kindling-induced mossy fiber sprouting on repeated NMDA receptor activation are consistent with the possibility that the NMDA receptor is part of a transmembrane signaling pathway that induces long-term cellular alterations and circuit remodeling in response to repeated seizures, but is not required for permanent seizure susceptibility in circuitry altered by kindling.


2000 ◽  
Vol 84 (6) ◽  
pp. 2868-2879 ◽  
Author(s):  
M. Lynch ◽  
Ü. Sayin ◽  
G. Golarai ◽  
T. Sutula

Because granule cells in the dentate gyrus provide a major synaptic input to pyramidal neurons in the CA3 region of the hippocampus, spike generation by granule cells is likely to have a significant role in hippocampal information processing. Granule cells normally fire in a single-spike mode even when inhibition is blocked and provide single-spike output to CA3 when afferent activity converging into the entorhinal cortex from neocortex, brainstem, and other limbic regions increases. The effects of enhancement of N-methyl-d-aspartate (NMDA) receptor-dependent excitatory synaptic transmission and reduction in γ-aminobutyric acid-A (GABAA) receptor-dependent inhibition on spike generation were examined in granule cells of the dentate gyrus. In contrast to the single-spike mode observed in normal bathing conditions, perforant path stimulation in Mg2+-free bathing conditions evoked graded burst discharges in granule cells which increased in duration, amplitude, and number of spikes as a function of stimulus intensity. After burst discharges were evoked during transient exposure to bathing conditions that relieve the Mg2+ block of the NMDA receptor, there was a marked increase in the NMDA receptor-dependent component of the EPSP, but no significant increase in the non-NMDA receptor-dependent component of the EPSP in normal bathing medium. Supramaximal perforant path stimulation still evoked only a single spike, but granule cell spike generation was immediately converted from a single-spike firing mode to a graded burst discharge mode when inhibition was then reduced. The induction of graded burst discharges in Mg2+-free conditions and the expression of burst discharges evoked in normal bathing medium with subsequent disinhibition were both blocked bydl-2-amino-4-phosphonovaleric acid (APV) and were therefore NMDA receptor dependent, in contrast to long-term potentiation (LTP) in the perforant path, which is induced by NMDA receptors and is also expressed by α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptors. The graded burst discharge mode was also observed in granule cells when inhibition was reduced after a single epileptic afterdischarge, which enhances the NMDA receptor-dependent component of evoked synaptic response, and in the dentate gyrus reorganized by mossy fiber sprouting in kindled and kainic acid-treated rats. NMDA receptor-dependent plasticity of granule cell spike generation, which can be distinguished from LTP and induces long-term susceptibility to epileptic burst discharge under conditions of reduced inhibition, could modify information processing in the hippocampus and promote epileptic synchronization by increasing excitatory input into CA3.


2003 ◽  
Vol 89 (5) ◽  
pp. 2482-2488 ◽  
Author(s):  
Huan-Xin Chen ◽  
Steven N. Roper

cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) are two major modulators of synaptic transmission in the CNS but little is known about how they affect synaptic transmission in the human CNS. In this study, we used forskolin, a PKA activator, and phorbol ester, a PKC activator, to examine the effects of these kinases on synaptic transmission in granule cells of the dentate gyrus in human hippocampal slices using whole-cell recording methods. We found that both forskolin and phorbol ester increased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) but left the amplitude unaffected. Inactive forskolin and phorbol ester had no effect on sEPSCs in human dentate granule cells. Prior application of forskolin occluded the effects of phorbol ester on mEPSC frequency. Tetanic stimulation applied to the perforant path induced short-term depression in dentate gyrus granule cells. Both forskolin and phorbol ester significantly enhanced this short-term depression. Taken together, these results demonstrate that PKA and PKC are involved in up-regulation of excitatory synaptic transmission in human dentate granule cells, primarily by presynaptic mechanisms. In addition, the occlusion experiments suggest that the two kinases may share a common signal pathway.


1992 ◽  
Vol 67 (5) ◽  
pp. 1346-1358 ◽  
Author(s):  
K. J. Staley ◽  
T. S. Otis ◽  
I. Mody

1. Whole-cell and sharp electrode recordings from adult rat dentate gyrus GCs were performed in the 400-microns-thick hippocampal slice preparation maintained at 34 +/- 1 degrees C. Intrinsic membrane properties of granule cells (GCs) were evaluated with the use of a switching current-clamp amplifier. 2. With the whole-cell technique, the average resting membrane potential (RMP) of GCs was -85 mV when a potassium gluconate electrode solution was used versus -74 mV measured with potassium acetate-filled sharp microelectrodes. The membrane voltage response to injected current was linear over two membrane potential ranges, greater than 10 mV hyperpolarized from RMP and between 10 mV more negative than RMP and -62 mV. The average input resistances (RN) calculated over these ranges were 107 and 228 M omega in the whole-cell recordings versus 37 and 54 M omega in the sharp electrode recordings. There was no correlation between RMP and RN with either recording technique. The membrane time constant (tau m) determined at the RMP was 26.9 ms for whole-cell recordings and 13.9 ms for sharp electrode recordings. 3. There was no evidence of time-dependent changes in RMP, RN, and tau m in whole-cell recordings, although the slow inward rectification seen at hyperpolarized potentials decreased over 30-60 min. Addition of calcium buffers to the whole-cell recording solution did not result in a significant change in the average RMP, the average RN, or the average tau m. 4. Action potential threshold was comparable in whole-cell (-49 mV) and sharp electrode (-52 mV) recordings, but action potential amplitude was larger in whole-cell (126 mV) than in sharp electrode (106 mV) recordings. Spike frequency adaptation was present in the whole-cell recordings and could be abolished by addition of calcium buffers to the electrode solution. 5. We estimated rho, the ratio of dendritic to somatic conductance, to be 5.1 for the whole-cell records and 2.1 for sharp electrode recordings. The electrotonic length of the equivalent cylinder representing the cell processes was estimated to be 0.49 from the whole-cell data and 0.79 from the sharp electrode recordings. This implies that at rest there is only a 10% decrement in steady-state membrane voltage along the length of the dendrite due to shunting across the membrane resistance; small synaptic events occurring in the distal dendritic tree will therefore have a more substantial influence on the soma than previous analyses suggested.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 73 (6) ◽  
pp. 2392-2403 ◽  
Author(s):  
L. S. Leung ◽  
L. Roth ◽  
K. J. Canning

1. Laminar profiles of the average evoked potentials and current-source-density analysis were used to study the input provided by the medial perforant path (PP) to the hippocampus in the urethan-anesthetized rat. 2. Stimulation of the PP activated an early latency sink in the middle molecular layer of the dentate gyrus (DG) and in the stratum lacunosum-moleculare in CA1. The DG current sink was generated by excitatory synaptic currents activated by the PP on dentate granule cells. In the normal rat, the peak current sink in the DG was typically five times greater than that of CA1. However, the CA1 sink could be distinguished from the DG sink in several ways: 1) it peaked when the DG sink was subsiding; 2) it showed paired-pulse facilitation, whereas the DG sink did not; and 3) in rats in which the DG was lesioned by local colchicine injection, the DG sink was reduced much more than the CA1 sink. 3. The PP afferents to CA1 required a slightly higher stimulus threshold (> 100 microA) for activation than those projecting to the DG granule cells (< 30 microA). The onset latency of the early CA1 sink (2.5 +/- 0.2 ms, mean +/- SE) was also slightly longer than that of the DG sink (1.7 +/- 0.1 ms), suggesting that the axons of entorhinal layer III cells that project to CA1 have a slightly lower conduction velocity than the axons of the layer II cells that project to the DG. 4. The short-latency current sink activated by the PP in the distal dendritic layers of CA1 was likely provided by excitatory currents at the distal apical dendrites of CA1 pyramidal cells. The accompanying current source was mainly confined to stratum radiatum and appeared not to involve the cell body layer. Thus the electrotonic current spread may not be effective enough to depolarize the cell body or axon hillock. Contribution of interneurons to the above source-sink profile is possible, with the provision that these interneurons must have dendritic processes that span strata radiatum and lacunosum moleculare. 5. Extracellular field recordings provided no evidence that PP evoked a short-latency (< 9 ms) CA1-generated population spike, even with the use of micropipettes filled with mM bicuculline. Similarly, unit recordings in CA1 revealed only long-latency (9-17 ms) unit firing after PP stimulation, corresponding to a late, di/trisynaptic excitation of CA1 via the Schaffer collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Author(s):  
Francesca Billwiller ◽  
Laura Castillo ◽  
Heba Elseedy ◽  
Anton Ivanovich Ivanov ◽  
Jennyfer Scapula ◽  
...  

AbstractSeveral studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to fully characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.Significant statementAn increase of theta and gamma power in the dentate gyrus (DG) is an hallmark of paradoxical (REM) sleep (PS) and is suggested to promote learning and memory consolidation by synchronizing hippocampal networks and increasing its outputs to cortical targets. However the neuronal networks involved in such control of DG activity during PS are poorly understood. The present study identifies a population of GABA/Glutamate neurons in the lateral supramammllary nucleus (SuML) innervating the DG that could support such control during PS. Indeed, we show that activation of these SuML-DG projections increase theta power and frequency as well as gamma power in the DG specifically during PS and modulate activity of a subset of DG granule cells.


1996 ◽  
Vol 76 (6) ◽  
pp. 3798-3806 ◽  
Author(s):  
T. A. Macek ◽  
D. G. Winder ◽  
R. W. Gereau ◽  
C. O. Ladd ◽  
P. J. Conn

1. Previous reports have shown that group III metabotropic glutamate receptors (mGluRs) serve as autoreceptors at the lateral perforant path, but to date there has been no rigorous determination of the roles of other mGluRs as autoreceptors at this synapse. Furthermore, it is not known which of the mGluR subtypes serve as autoreceptors at the medial perforant path synapse. With the use of whole cell patch-clamp and field excitatory postsynaptic potential (fEPSP) recording techniques, we examined the groups of mGluRs that act as autoreceptors at lateral and medial perforant path synapses in adult rat hippocampal slices. 2. Consistent with previous reports, the group III mGluR agonist (D,L)-2-amino-4-phosphonobutyric acid reduced fEPSPs and excitatory postsynaptic currents (EPSCs) in the dentate gyrus. However, the group-II-selective agonist (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) also reduced fEPSPs and EPSCs, suggesting that multiple mGluR subtypes may serve as autoreceptors at perforant path synapses. 3. Selective activation of either medial or lateral perforant pathways revealed that micromolar concentrations of (L)-2-amino-4-phosphonobutyric acid (L-AP4) reduce fEPSPs in lateral but not medial perforant path, suggesting group III involvement at the lateral perforant pathway. Conversely, DCG-IV and 2R, 4R-4-aminopyrrolidine-2,4-dicarboxylate, another group-II-selective mGluR agonist, potently reduced fEPSPs at the medial but not lateral perforant path, suggesting that a group II mGluR may act as an autoreceptor at the medial perforant path-dentate gyrus synapse. 4. Antagonist studies with group-selective antagonists such as (2S,3S,4S)-2-methyl-2-(carboxycyclpropyl)glycine (MCCG; group II) and alpha-methyl-L-AP4 (MAP4; group III) suggest differential involvement of each group at these synapses. The effect of L-AP4 at the lateral perforant path synapse was blocked by MAP-4, but not MCCG. In contrast, the effect of DCG-IV was blocked by application of MCCG, but not MAP4. 5. Previous studies suggest that the effect of L-AP4 at the lateral perforant path synapse is mediated by a presynaptic mechanism. In the present studies, we found that concentrations of DCG-IV that reduce transmission at the medial perforant path synapse reduce paired-pulse depression and do not reduce kainate-evoked currents recorded from dentate granule cells. This is consistent with the hypothesis that DCG-IV also acts by a presynaptic mechanism.


Sign in / Sign up

Export Citation Format

Share Document