scholarly journals Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabio D. Steffen ◽  
Mokrane Khier ◽  
Danny Kowerko ◽  
Richard A. Cunha ◽  
Richard Börner ◽  
...  

AbstractThe fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states. Molecular dynamics simulations suggest a structural link between heterogeneity and the sugar conformation at the exon-intron binding interface. While Mg2+ ions lock the exon in place and give rise to long dwell times in the exon bound FRET state, sugar puckering alleviates this structural rigidity and likely promotes exon release. The interplay of sugar puckering and metal ion coordination may be an important mechanism to balance binding affinities of RNA and DNA interactions in general.

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yong Wang ◽  
Bin-Quan Luan ◽  
Zhiyu Yang ◽  
Xinyue Zhang ◽  
Brandon Ritzo ◽  
...  

Abstract Both cytosine-Ag-cytosine interactions and cytosine modifications in a DNA duplex have attracted great interest for research. Cytosine (C) modifications such as methylcytosine (mC) and hydroxymethylcytosine (hmC) are associated with tumorigenesis. However, a method for directly discriminating C, mC and hmC bases without labeling, modification and amplification is still missing. Additionally, the nature of coordination of Ag+ with cytosine-cytosine (C-C) mismatches is not clearly understood. Utilizing the alpha-hemolysin nanopore, we show that in the presence of Ag+, duplex stability is most increased for the cytosine-cytosine (C-C) pair, followed by the cytosine-methylcytosine (C-mC) pair and the cytosine-hydroxymethylcytosine (C-hmC) pair, which has no observable Ag+ induced stabilization. Molecular dynamics simulations reveal that the hydrogen-bond-mediated paring of a C-C mismatch results in a binding site for Ag+. Cytosine modifications (such as mC and hmC) disrupted the hydrogen bond, resulting in disruption of the Ag+ binding site. Our experimental method provides a novel platform to study the metal ion-DNA interactions and could also serve as a direct detection method for nucleobase modifications.


2005 ◽  
Vol 52 (6) ◽  
pp. 1281-1290 ◽  
Author(s):  
Chin-Wen Chen ◽  
Hsuan-Liang Liu ◽  
Jin-Chung Lin ◽  
Yih Ho

2021 ◽  
Author(s):  
Steffen Wolf ◽  
Benedikt Sohmen ◽  
Björn Hellenkamp ◽  
Johann Thurn ◽  
Gerhard Stock ◽  
...  

We report on a study that combines advanced fluorescence methods with molecular dynamics simulations to cover timescales from nanoseconds to milliseconds for a large protein, the chaperone Hsp90.


2020 ◽  
Author(s):  
Oleg Ganichkin ◽  
Renee Vancraenenbroeck ◽  
Gabriel Rosenblum ◽  
Hagen Hofmann ◽  
Alexander S. Mikhailov ◽  
...  

AbstractThe mechano-chemical GTPase dynamin assembles on membrane necks of clathrin-coated vesicles into helical oligomers that constrict and eventually cleave the necks in a GTP-dependent way. It remains not clear whether dynamin achieves this via molecular motor activity and, if so, by what mechanism. Here, we used ensemble kinetics, single-molecule FRET and molecular dynamics simulations to characterize dynamin’s GTPase cycle and determine the powerstroke strength. The results were incorporated into a coarse-grained structural model of dynamin filaments on realistic membrane templates. Working asynchronously, dynamin’s motor modules were found to collectively constrict a membrane tube. Force is generated by motor dimers linking adjacent helical turns and constriction is accelerated by their strain-dependent dissociation. Consistent with experiments, less than a second is needed to constrict a membrane tube to the hemi-fission radius. Thus, a membrane remodeling mechanism relying on cooperation of molecular ratchet motors driven by GTP hydrolysis has been revealed.


2006 ◽  
Vol 174 (7) ◽  
pp. 1107-1117 ◽  
Author(s):  
Jizhong Lou ◽  
Tadayuki Yago ◽  
Arkadiusz G. Klopocki ◽  
Padmaja Mehta ◽  
Wei Chen ◽  
...  

L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin–ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kinetics experiments, Monte Carlo modeling, and flow chamber adhesion studies, we show that eliminating a hydrogen bond to increase the flexibility of an interdomain hinge in L-selectin reduced the shear threshold for adhesion via two mechanisms. One affects the on-rate by increasing tethering through greater rotational diffusion. The other affects the off-rate by strengthening rolling through augmented catch bonds with longer lifetimes at smaller forces. By forcing open the hinge angle, ligand may slide across its interface with L-selectin to promote rebinding, thereby providing a mechanism for catch bonds. Thus, allosteric changes remote from the ligand-binding interface regulate both bond formation and dissociation.


Sign in / Sign up

Export Citation Format

Share Document