scholarly journals Multipurpose self-configuration of programmable photonic circuits

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Pérez-López ◽  
Aitor López ◽  
Prometheus DasMahapatra ◽  
José Capmany

AbstractProgrammable integrated photonic circuits have been called upon to lead a new revolution in information systems by teaming up with high speed digital electronics and in this way, adding unique complementary features supported by their ability to provide bandwidth-unconstrained analog signal processing. Relying on a common hardware implemented by two-dimensional integrated photonic waveguide meshes, they can provide multiple functionalities by suitable programming of their control signals. Scalability, which is essential for increasing functional complexity and integration density, is currently limited by the need to precisely control and configure several hundreds of variables and simultaneously manage multiple configuration actions. Here we propose and experimentally demonstrate two different approaches towards management automation in programmable integrated photonic circuits. These enable the simultaneous handling of circuit self-characterization, auto-routing, self-configuration and optimization. By combining computational optimization and photonics, this work takes an important step towards the realization of high-density and complex integrated programmable photonics.

2016 ◽  
Vol 26 (02) ◽  
pp. 1750030 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajender Kumar Sharma

To develop low-power, high-speed and area-efficient design for portable electronics devices and signal processing applications is a very challenging task. Multiplier has an important role in digital signal processing. Reducing the power consumption of multiplier will bring significant power reduction and other associated advantages in the overall digital system. In this paper, a low-power and area-efficient two-dimensional bypassing multiplier is presented. In two-dimensional bypassing, row and column are bypassed and thus the switching power is saved. Simulation results are realized using UMC 90[Formula: see text]nm CMOS technology and 0.9[Formula: see text]V, with Cadence Spectre simulation tool. The proposed architecture is compared with the existing multiplier architectures, i.e., Braun’s multiplier, row bypassing multiplier, column bypassing multiplier and row and column bypassing multiplier. Performance parameters of the proposed multiplier are better than the existing multipliers in terms of area occupation, power dissipation and power-delay product. These results are obtained for randomly generated input test patterns having uniform distribution probability.


2019 ◽  
Vol 9 (22) ◽  
pp. 4807
Author(s):  
Kouichi Nitta ◽  
Yuki Yano ◽  
Chihiro Kitada ◽  
Osamu Matoba

Computational ghost imaging (CGI) is one of several attractive techniques for optical measurement because it can determine two-dimensional structures of target objects without using an image sensor. However, conventional CGI is not suitable for practical use in terms of measurement time. In this paper, we report on reducing the optical measurement time in CGI and propose a new CGI implementation. The proposed method utilizes the wide bandwidth of laser diodes. We can obtain a set of speckle patterns required in computational ghost imaging in a significantly shorter time by changing emission patterns. Consequently, this method is suitable for high-speed measurements. The concept of the method is described and verified by numerical analysis. Further, optical setup for the experimental verification is assembled. As verified with experiments and signal processing, the proposed method can provide reconstructed images of targets.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 115
Author(s):  
Teemu Sillanpää ◽  
Alexander Smirnov ◽  
Pekko Jaatinen ◽  
Jouni Vuojolainen ◽  
Niko Nevaranta ◽  
...  

Non-contact rotor position sensors are an essential part of control systems in magnetically suspended high-speed drives. In typical active magnetic bearing (AMB) levitated high-speed machine applications, the displacement of the rotor in the mechanical air gap is measured with commercially available eddy current-based displacement sensors. The aim of this paper is to propose a robust and compact three-dimensional position sensor that can measure the rotor displacement of an AMB system in both the radial and axial directions. The paper presents a sensor design utilizing only a single unified sensor stator and a single shared rotor mounted target piece surface to achieve the measurement of all three measurement axes. The sensor uses an inductive measuring principle to sense the air gap between the sensor stator and rotor piece, which makes it robust to surface variations of the sensing target. Combined with the sensor design, a state of the art fully digital signal processing chain utilizing synchronous in-phase and quadrature demodulation is presented. The feasibility of the proposed sensor design is verified in a closed-loop control application utilizing a 350-kW, 15,000-r/min high-speed industrial induction machine with magnetic bearing suspension. The inductive sensor provides an alternative solution to commercial eddy current displacement sensors. It meets the application requirements and has a robust construction utilizing conventional electrical steel lamination stacks and copper winding.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950106
Author(s):  
Qian Dong ◽  
Bing Li

The hardware-based dictionary compression is widely adopted for high speed requirement of real-time data processing. Hash function helps to manage large dictionary to improve compression ratio but is prone to collisions, so some phrases in match search result are not true matches. This paper presents a novel match search approach called dual chaining hash refining, which can improve the efficiency of match search. From the experimental results, our method showed obvious advantage in compression speed compared with other approach that utilizes single hash function described in the previous publications.


Sign in / Sign up

Export Citation Format

Share Document