scholarly journals Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zachary J. Wright ◽  
Bonnie Bartel

AbstractPeroxisomes are vital organelles that compartmentalize critical metabolic reactions, such as the breakdown of fats, in eukaryotic cells. Although peroxisomes typically are considered to consist of a single membrane enclosing a protein lumen, more complex peroxisomal membrane structure has occasionally been observed in yeast, mammals, and plants. However, technical challenges have limited the recognition and understanding of this complexity. Here we exploit the unusually large size of Arabidopsis peroxisomes to demonstrate that peroxisomes have extensive internal membranes. These internal vesicles accumulate over time, use ESCRT (endosomal sorting complexes required for transport) machinery for formation, and appear to derive from the outer peroxisomal membrane. Moreover, these vesicles can harbor distinct proteins and do not form normally when fatty acid β-oxidation, a core function of peroxisomes, is impaired. Our findings suggest a mechanism for lipid mobilization that circumvents challenges in processing insoluble metabolites. This revision of the classical view of peroxisomes as single-membrane organelles has implications for all aspects of peroxisome biogenesis and function and may help address fundamental questions in peroxisome evolution.

2007 ◽  
Vol 177 (2) ◽  
pp. 289-303 ◽  
Author(s):  
Tong Guo ◽  
Christopher Gregg ◽  
Tatiana Boukh-Viner ◽  
Pavlo Kyryakov ◽  
Alexander Goldberg ◽  
...  

We define the dynamics of spatial and temporal reorganization of the team of proteins and lipids serving peroxisome division. The peroxisome becomes competent for division only after it acquires the complete set of matrix proteins involved in lipid metabolism. Overloading the peroxisome with matrix proteins promotes the relocation of acyl-CoA oxidase (Aox), an enzyme of fatty acid β-oxidation, from the matrix to the membrane. The binding of Aox to Pex16p, a membrane-associated peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and the subsequent transbilayer movement of DAG initiate the assembly of a complex between the peroxins Pex10p and Pex19p, the dynamin-like GTPase Vps1p, and several actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes membrane fission, thereby executing the terminal step of peroxisome division.


2017 ◽  
Author(s):  
Fred D. Mast ◽  
Thurston Herricks ◽  
Kathleen M. Strehler ◽  
Leslie R. Miller ◽  
Ramsey A. Saleem ◽  
...  

AbstractDynamic control of peroxisome proliferation is integral to the peroxisome’s many functions. A breakdown in the ability of cells to form peroxisomes is linked to many human health issues, including defense against infectious agents, cancer, aging, heart disease, obesity and diabetes, and forms the basis of a spectrum of peroxisomal genetic disorders that cause severe neuropathologies. The ER serves as a source for preperoxisomal vesicles (PPVs) that mature into peroxisomes during de novo peroxisome biogenesis and to support growth and division of existing peroxisomes. However, the mechanism of PPV formation and release from the ER remains poorly understood. Here we show that the evolutionarily ancient endosomal sorting complexes required for transport (ESCRT)-III are peroxisome biogenesis factors that function to cleave PPVs budding from the ER into the cytosol. Using comprehensive morphological and genetic assays of peroxisome formation and function we find that absence of ESCRT-III proteins impedes de novo peroxisome formation and results in an aberrant peroxisome population in vivo. Using a cell-free PPV budding assay we show that ESCRT-III proteins Vps20 and Snf7 are required to release PPVs from the ER. ESCRT-III is therefore a positive effector of membrane scission for vesicles budding both away from and towards the cytosol, a finding that has important implications for the evolutionary timing of emergence of peroxisomes and the rest of the internal membrane architecture of the eukaryotic cell.


2020 ◽  
Author(s):  
Fei Wu ◽  
Rinse de Boer ◽  
Arjen M. Krikken ◽  
Arman Akşit ◽  
Nicola Bordin ◽  
...  

AbstractWe analyzed all four Pex23 family proteins of the yeast Hansenula polymorpha, which localize to the ER. Of these Pex24 and Pex32, but not Pex23 and Pex29, accumulate at peroxisome-ER contacts, where they are important for normal peroxisome biogenesis and proliferation and contribute to organelle positioning and segregation.Upon deletion of PEX24 and PEX32 - and to a lesser extent of PEX23 and PEX29 - peroxisome-ER contacts are disrupted, concomitant with peroxisomal defects. These defects are suppressed upon introduction of an artificial peroxisome-ER tether.Accumulation of Pex32 at peroxisomes-ER contacts is lost in the absence of the peroxisomal membrane protein Pex11. At the same time peroxisome-ER contacts are disrupted, indicating that Pex11 contributes to Pex32-dependent peroxisome-ER contact formation.Summarizing, our data indicate that H. polymorpha Pex24 and Pex32 are tethers at peroxisome-ER contacts that are important for normal peroxisome biogenesis and dynamics.SummaryTwo Hansenula polymorpha ER proteins, Pex24 and Pex32, are tethers at peroxisome-ER contacts and function together with the peroxisomal protein Pex11. Their absence disturbs these contacts leading to multiple peroxisomal defects, which can be restored by an artificial tether.


2002 ◽  
Vol 158 (2) ◽  
pp. 259-271 ◽  
Author(s):  
Jennifer J. Smith ◽  
Marcello Marelli ◽  
Rowan H. Christmas ◽  
Franco J. Vizeacoumar ◽  
David J. Dilworth ◽  
...  

Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.


2019 ◽  
Vol 67 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Kohjiro Nagao ◽  
Akira Murakami ◽  
Masato Umeda

2009 ◽  
Vol 7 ◽  
pp. e0123 ◽  
Author(s):  
Navneet Kaur ◽  
Sigrun Reumann ◽  
Jianping Hu

Endocrinology ◽  
2017 ◽  
Vol 159 (1) ◽  
pp. 272-284 ◽  
Author(s):  
Julie L Frey ◽  
Soohyun P Kim ◽  
Zhu Li ◽  
Michael J Wolfgang ◽  
Ryan C Riddle

2021 ◽  
Author(s):  
Takeshi Terabayashi ◽  
Luis F Menezes ◽  
Fang Zhou ◽  
Hongyi Cai ◽  
Peter J Walter ◽  
...  

AbstractBackgroundMultiple studies of tissue and cell samples from patients and pre-clinical models of autosomal dominant polycystic kidney disease report abnormal mitochondrial function and morphology and suggest metabolic reprogramming is an intrinsic feature of this disease. Peroxisomes interact with mitochondria physically and functionally, and congenital peroxisome biogenesis disorders can cause various phenotypes, including mitochondrial defects, metabolic abnormalities and renal cysts. We hypothesized that a peroxisomal defect might contribute to the metabolic and mitochondrial impairments observed in autosomal dominant polycystic kidney disease.MethodsUsing control and Pkd1-/- kidney epithelial cells, we investigated peroxisome abundance, biogenesis and morphology by immunoblotting, immunofluorescent and live cell imaging of peroxisome-related proteins and assayed peroxisomal specific β-oxidation. We further analyzed fatty acid composition by mass spectrometry in kidneys of Pkd1fl/fl; Ksp-Cre mice. We also evaluated peroxisome lipid metabolism in published metabolomics datasets of Pkd1 mutant cells and kidneys. Lastly, we investigated if the C-terminus or full-length polycystin-1 co-localize with peroxisome markers by imaging studies.ResultsPeroxisome abundance, morphology and peroxisome-related protein expression in Pkd1-/- cells were normal, suggesting preserved peroxisome biogenesis. Peroxisomal β-oxidation was not impaired in Pkd1-/- cells, and there was no obvious accumulation of very long chain fatty acids in kidneys of mutant mice. Re-analysis of published datasets provide little evidence of peroxisomal abnormalities in independent sets of Pkd1 mutant cells and cystic kidneys, while providing further evidence of mitochondrial fatty acid oxidation defects. Imaging studies with either full length polycystin-1 or its C-terminus, a fragment previously shown to go to the mitochondria, showed minimal co-localization with peroxisome markers.ConclusionsOur studies showed that loss of Pkd1 does not disrupt peroxisome biogenesis nor peroxisome-dependent fatty acid metabolism.Key points-While mitochondrial abnormalities and fatty acid oxidation impairment have been reported in ADPKD, no studies have investigated if peroxisome dysfunction contributes to these defects.-We investigated peroxisome morphology, biogenesis and function in cell and animal models of ADPKD and investigated whether polycystin-1 co-localized with peroxisome proteins.-Our studies show that loss of Pkd1 does not disrupt peroxisome biogenesis nor peroxisome-dependent fatty acid metabolism.


Sign in / Sign up

Export Citation Format

Share Document