scholarly journals Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuyang Meng ◽  
Jackie M. Kleinsasser ◽  
Jeremy P. Richards ◽  
Simon R. Tapster ◽  
Pedro J. Jugo ◽  
...  

AbstractMost known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalite-magnetite-quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.

Author(s):  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Fernando Flecha de Alkmim ◽  
Luiz Carlos da Silva ◽  
Marly Babinski ◽  
...  

The Araçuaí Fold Belt was defined as the southeastern limit of the São Francisco Craton in the classicalpaper published by Fernando Flávio Marques de Almeida in 1977. This keystone of the Brazilian geologicliterature catalyzed important discoveries, such as of Neoproterozoic ophiolites and a calc-alkaline magmaticarc, related to the Araçuaí Belt and paleotectonic correlations with its counterpart located in Africa (the WestCongo Belt), that provided solid basis to define the Araçuaí-West-Congo Orogen by the end of the 1990thdecade. After the opening of the Atlantic Ocean in Cretaceous times, two thirds of the Araçuaí-West-CongoOrogen remained in the Brazil side, including records of the continental rift and passive margin phases ofthe precursor basin, all ophiolite slivers and the whole orogenic magmatism formed from the pre-collisionalto post-collisional stages. Thus, the name Araçuaí Orogen has been applied to the Neoproterozoic-Cambrianorogenic region that extends from the southeastern edge of the São Francisco Craton to the Atlantic coastlineand is roughly limited between the 15º and 21º S parallels. After 30 years of systematic geological mappingtogether with geochemical and geochronological studies published by many authors, all evolutionary stagesof the Araçuaí Orogen can be reasonably interpreted. Despite the regional metamorfism and deformation, thefollowing descriptions generally refer to protoliths. All mentioned ages were obtained by U-Pb method onzircon. The Macaúbas Group records rift, passive margin and oceanic environments of the precursor basinof the Araçuaí Orogen. From the base to the top and from proximal to distal units, this group comprises thepre-glacial Duas Barras and Rio Peixe Bravo formations, and the glaciogenic Serra do Catuni, Nova Auroraand Lower Chapada Acauã formations, related to continental rift and transitional stages, and the diamictitefreeUpper Chapada Acauã and Ribeirão da Folha formations, representing passive margin and oceanicenvironments. Dates of detrital zircon grains from Duas Barras sandstones and Serra do Catuni diamictitessuggest a maximum sedimentation age around 900 Ma for the lower Macaúbas Group, in agreement withages yielded by the Pedro Lessa mafic dikes (906 ± 2 Ma) and anorogenic granites of Salto da Divisa (875 ±9 Ma). The thick diamictite-bearing marine successions with sand-rich turbidites, diamictitic iron formation,mafic volcanic rocks and pelites (Nova Aurora and Lower Chapada Acauã formations) were depositedfrom the rift to transitional stages. The Upper Chapada Acauã Formation consists of a sand-pelite shelfsuccession, deposited after ca. 864 Ma ago in the proximal passive margin. The Ribeirão da Folha Formationmainly consists of sand-pelite turbidites, pelagic pelites, sulfide-bearing cherts and banded iron formations,representing distal passive margin to oceanic sedimentation. Gabbro and dolerite with plagiogranite veinsdated at ca. 660 Ma, and ultramafic rocks form tectonic slices of oceanic lithosphere thrust onto packagesof the Ribeirão da Folha Formation. The pre-collisional, calc-alkaline, continental magmatic arc (G1 Suite,630-585 Ma) consists of tonalites and granodiorites, with minor diorite and gabbro. A volcano-sedimentarysuccession of this magmatic arc includes pyroclastic and volcaniclastic rocks of dacitic composition datedat ca. 585 Ma, ascribed to the Palmital do Sul and Tumiritinga formations (Rio Doce Group), depositedfrom intra-arc to fore-arc settings. Detrital zircon geochronology suggests that the São Tomé wackes (RioDoce Group) represent intra-arc to back-arc sedimentation after ca. 594 Ma ago. The Salinas Formation, aconglomerate-wacke-pelite association located to northwest of the magmatic arc, represents synorogenicsedimentation younger than ca. 588 Ma. A huge zone of syn-collisional S-type granites (G2 Suite, 582-560Ma) occurs to the east and north of the pre-collisional magmatic arc, northward of latitude 20º S. Partialmelting of G2 granites originated peraluminous leucogranites (G3 Suite) from the late- to post-collisionalstages. A set of late structures, and the post-collisional intrusions of the S-type G4 Suite (535-500 Ma) andI-type G5 Suite (520-490 Ma) are related to the gravitational collapse of the orogen. The location of themagmatic arc, roughly parallel to the zone with ophiolite slivers, from the 17º30’ S latitude southwardssuggests that oceanic crust only developed along the southern segment of the precursor basin of the Araçuaí-West-Congo Orogen. This basin was carved, like a large gulf partially floored by oceanic crust, into the SãoFrancisco-Congo Paleocontinent, but paleogeographic reconstructions show that the Bahia-Gabon cratonicbridge (located to the north of the Araçuaí Orogen) subsisted since at least 1 Ga until the Atlantic opening.This uncommon geotectonic scenario inspired the concept of confined orogen, quoted as a new type ofcollisional orogen in the international literature, and the appealing nutcracker tectonic model to explain theAraçuaí-West-Congo Orogen evolution. 


2019 ◽  
Vol 156 (9) ◽  
pp. 1510-1526
Author(s):  
Davoud Raeisi ◽  
Hassan Mirnejad ◽  
Maryam Sheibi

AbstractGranitoid stocks crop out in the Ghahan and Sarbadan areas near Tafresh city, which is situated in the central part of the Urumieh–Dokhtar Magmatic Arc, Iran. The stocks, consisting of porphyritic and sub-granular diorite and granular granodiorite, intruded into Eocene volcano-sedimentary units. Normalized multi-element diagrams indicate that the analysed rocks are enriched in large-ion lithophile elements and depleted in high field strength elements. These geochemical features are typical of subduction-related calc-alkaline arc magmas. The stocks belong to the ferromagnetic and I-type granitoid series. Anisotropy of magnetic susceptibility provides information about the internal fabric of the granitoids. Susceptibility values range from 5.6 × 10−3 to more than 71.6 × 10−3, averaging 27.9 × 10−3 SI. Relatively low anisotropy values (P%) rarely exceed 10 %. Shape parameters (T) vary between −0.48 and +0.74, averaging + 0.2. Each stock is interpreted to contain a distinct feeder zone in which magnetic lineation plunges steeply (> 60°), suggesting that the magma ascended mainly in a NW–SE conduit and, to a lesser extent, in an E–W direction. Integration of magnetic fabric data, field observations and tectonic setting indicates that the shear zone that was developed between the Indes and Talkhab faults had created an opening into which the Ghahan and Sarbadan stocks were emplaced by way of creating a suitable tensional space for the ascent of magma.


2008 ◽  
Vol 145 (6) ◽  
pp. 845-857 ◽  
Author(s):  
TAI-PING ZHAO ◽  
MEI-FU ZHOU ◽  
JUN-HONG ZHAO ◽  
KAI-JUN ZHANG ◽  
WEI CHEN

AbstractThe Rutog granitic pluton lies in the Gangdese magmatic arc in the westernmost part of the Lhasa Terrane, NW Tibet, and has SHRIMP zircon U–Pb ages of c. 80 Ma. The pluton consists of granodiorite and monzogranite with SiO2 ranging from 62 to 72 wt% and Al2 O3 from 15 to 17 wt%. The rocks contain 2.33–4.93 wt% K2O and 3.42–5.52 wt% Na2O and have Na2O/K2O ratios of 0.74–2.00. Their chondrite-normalized rare earth element (REE) patterns are enriched in LREE ((La/Yb)n = 15 to 26) and do not show significant Eu anomalies (δEu = 0.68–1.15). On a primitive mantle-normalized trace element diagram, the rocks are rich in large ion lithophile elements (LILE) and poor in high field strength elements (HFSE), HREE and Y. Their Sr/Y ratios range from 15 to 78 with an average of 30. The rocks have constant initial 87Sr/86Sr ratios (0.7045 to 0.7049) and slightly positive ɛNd(t) values (+0.1 to +2.3), similar to I-type granites generated in an arc setting. The geochemistry of the Rutog pluton is best explained by partial melting of a thickened continental crust, triggered by underplating of basaltic magmas in a mantle wedge. The formation of the Rutog pluton suggests flat subduction of the Neo-Tethyan oceanic lithosphere from the south. Crustal thickening may have occurred in the Late Cretaceous prior to the India–Asia collision.


1987 ◽  
Vol 24 (10) ◽  
pp. 2047-2064 ◽  
Author(s):  
Clark E. Isachsen

The Westcoast Crystalline Complex is a belt of plutonic rocks along the west coast of Vancouver Island. It is composed mainly of heterogeneous amphibolitic country rock (Westcoast amphibolite), granitoids of trondhjemitic to gabbroic composition (Westcoast diorite), and variable mixtures of these two components (Westcoast migmatite).Although the protolith of some deformed enclaves may be Paleozoic, most of these rocks were generated in a magmatic-arc setting and intruded in Jurassic time. Major- and trace-element chemistry of the Westcoast Crystalline Complex shows a sub-alkaline tholeiitic to calc-alkaline trend.The exponential cooling curves derived for Westcoast diorites are not consistent with in situ crustal magma genesis but instead indicate that these rocks intruded relatively cool country rock.Based on age and chemistry, the Westcoast Crystalline Complex can be interpreted as the deeper crustal equivalent of the more differentiated Island Intrusions and Bonanza Volcanics. Taken together, these rocks provide a disrupted and perhaps incomplete cross section of the magmatic arc of Vancouver Island.Reconnaissance of the Wark–Colquitz Complex of southern Vancouver Island shows it to be essentially indistinguishable in petrography, chemistry, and age from the Westcoast Crystalline Complex, and a similar history is inferred.A calc-alkaline chemistry and rapid initial cooling also characterize a Catface Intrusion dated at 41 Ma. This is again compatible with arc magmatism, but its proximity to the coeval trench is enigmatic.


1993 ◽  
Vol 130 (5) ◽  
pp. 647-656 ◽  
Author(s):  
T. C. Pharaoh ◽  
T. S. Brewer ◽  
P. C. Webb

AbstractDeep boreholes show that plutonic and volcanic igneous rocks comprise an important component of the Caledonian basement in eastern England. The isotopic compositions of these rocks reveal that many of them are of late Ordovician age (440–460 Ma), and their geochemical compositions suggest calc–alkaline affinities. The intermediate (diorite-tonalite) plutonic rocks are associated with a prominent northwest–southeast trending belt of aeromagnetic anomalies extending from Derby to St Ives, Hunts., which is interpreted to work the plutonic core of a calc-alkaline magmatic arc. It is inferred that this arc was generated by the subduction of oceanic lithosphere, possibly from the Tornquist Sea, in a south or southwest direction beneath the Midlands Microcraton in late Ordovician times. The age and geochemical composition of concealed Ordovician volcanic rocks in eastern England, and hypabyssal intrusions of the Midlands Minor Intrusive Suite in central England, is compatible with such a hypothesis.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2019 ◽  
Vol 76 ◽  
pp. 26-43 ◽  
Author(s):  
Xiangping Zhu ◽  
Duoji ◽  
Guangming Li ◽  
Hongfei Liu ◽  
Huaan Chen ◽  
...  

Author(s):  
L. T. Silver ◽  
B. W. Chappell

ABSTRACTThe Peninsular Ranges Batholith of southern and Baja California is the largest segment of a Cretaceous magmatic arc that was once continuous from northern California to southern Baja California. In this batholith, the emplacement of igneous rocks took place during a single sequence of magmatic activity, unlike many of the other components of the Cordilleran batholiths which formed during successive separate magmatic episodes. Detailed radiometric dating has shown that it is a composite of two batholiths. A western batholith, which was more heterogeneous in composition, formed as a static magmatic arc between 140 and 105 Ma and was intrusive in part into related volcanic rocks. The eastern batholith formed as a laterally transgressing arc which moved away from those older rocks between 105 and 80 Ma, intruding metasedimentary rocks. Rocks of the batholith range from undersaturated gabbros through to felsic granites, but tonalite is the most abundant rock throughout. Perhaps better than elsewhere in the Cordillera, the batholith shows beautifully developed asymmetries in chemical and isotopic properties. The main gradients in chemical composition from W to E are found among the trace elements, with Ba, Sr, Nb and the light rare earth elements increasing by more than a factor of two, and P, Rb, Pb, Th, Zn and Ga showing smaller increases. Mg and the transition metals decrease strongly towards the E, with Sc, V and Cu falling to less than half of their value in the most westerly rocks. Oxygen becomes very systematically more enriched in18O from W to E and the Sr, Nd and Pb isotopic systems change progressively from mantle values in the W to a more evolved character on the eastern side of the batholith. In detail the petrogenesis of the Peninsular Ranges Batholith is not completely understood, but many general aspects of the origin are clear. The exposed rocks, particularly in the western batholith, closely resemble those of present day island arcs, although the most typical and average tonalitic composition is distinctly more felsic than the mean quartz diorite or mafic andesite composition of arcs. Chemical and isotopic properties of the western part of the batholith indicate that it formed as the root of a primitive island arc on oceanic lithosphere at a convergent plate margin. Further E, the plutonic rocks appear to have been derived by partial melting from deeper sources of broadly basaltic composition at subcrustal levels. The compositional systematics of the batholith do not reflect a simple mixing of various end-members but are a reflection of the differing character of the source regions laterally and vertically away from the pre-Cretaceous continental margin.


Sign in / Sign up

Export Citation Format

Share Document