scholarly journals ORÓGENO ARAÇUAÍ: SÍNTESE DO CONHECIMENTO 30 ANOS APÓS ALMEIDA 1977

Author(s):  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Fernando Flecha de Alkmim ◽  
Luiz Carlos da Silva ◽  
Marly Babinski ◽  
...  

The Araçuaí Fold Belt was defined as the southeastern limit of the São Francisco Craton in the classicalpaper published by Fernando Flávio Marques de Almeida in 1977. This keystone of the Brazilian geologicliterature catalyzed important discoveries, such as of Neoproterozoic ophiolites and a calc-alkaline magmaticarc, related to the Araçuaí Belt and paleotectonic correlations with its counterpart located in Africa (the WestCongo Belt), that provided solid basis to define the Araçuaí-West-Congo Orogen by the end of the 1990thdecade. After the opening of the Atlantic Ocean in Cretaceous times, two thirds of the Araçuaí-West-CongoOrogen remained in the Brazil side, including records of the continental rift and passive margin phases ofthe precursor basin, all ophiolite slivers and the whole orogenic magmatism formed from the pre-collisionalto post-collisional stages. Thus, the name Araçuaí Orogen has been applied to the Neoproterozoic-Cambrianorogenic region that extends from the southeastern edge of the São Francisco Craton to the Atlantic coastlineand is roughly limited between the 15º and 21º S parallels. After 30 years of systematic geological mappingtogether with geochemical and geochronological studies published by many authors, all evolutionary stagesof the Araçuaí Orogen can be reasonably interpreted. Despite the regional metamorfism and deformation, thefollowing descriptions generally refer to protoliths. All mentioned ages were obtained by U-Pb method onzircon. The Macaúbas Group records rift, passive margin and oceanic environments of the precursor basinof the Araçuaí Orogen. From the base to the top and from proximal to distal units, this group comprises thepre-glacial Duas Barras and Rio Peixe Bravo formations, and the glaciogenic Serra do Catuni, Nova Auroraand Lower Chapada Acauã formations, related to continental rift and transitional stages, and the diamictitefreeUpper Chapada Acauã and Ribeirão da Folha formations, representing passive margin and oceanicenvironments. Dates of detrital zircon grains from Duas Barras sandstones and Serra do Catuni diamictitessuggest a maximum sedimentation age around 900 Ma for the lower Macaúbas Group, in agreement withages yielded by the Pedro Lessa mafic dikes (906 ± 2 Ma) and anorogenic granites of Salto da Divisa (875 ±9 Ma). The thick diamictite-bearing marine successions with sand-rich turbidites, diamictitic iron formation,mafic volcanic rocks and pelites (Nova Aurora and Lower Chapada Acauã formations) were depositedfrom the rift to transitional stages. The Upper Chapada Acauã Formation consists of a sand-pelite shelfsuccession, deposited after ca. 864 Ma ago in the proximal passive margin. The Ribeirão da Folha Formationmainly consists of sand-pelite turbidites, pelagic pelites, sulfide-bearing cherts and banded iron formations,representing distal passive margin to oceanic sedimentation. Gabbro and dolerite with plagiogranite veinsdated at ca. 660 Ma, and ultramafic rocks form tectonic slices of oceanic lithosphere thrust onto packagesof the Ribeirão da Folha Formation. The pre-collisional, calc-alkaline, continental magmatic arc (G1 Suite,630-585 Ma) consists of tonalites and granodiorites, with minor diorite and gabbro. A volcano-sedimentarysuccession of this magmatic arc includes pyroclastic and volcaniclastic rocks of dacitic composition datedat ca. 585 Ma, ascribed to the Palmital do Sul and Tumiritinga formations (Rio Doce Group), depositedfrom intra-arc to fore-arc settings. Detrital zircon geochronology suggests that the São Tomé wackes (RioDoce Group) represent intra-arc to back-arc sedimentation after ca. 594 Ma ago. The Salinas Formation, aconglomerate-wacke-pelite association located to northwest of the magmatic arc, represents synorogenicsedimentation younger than ca. 588 Ma. A huge zone of syn-collisional S-type granites (G2 Suite, 582-560Ma) occurs to the east and north of the pre-collisional magmatic arc, northward of latitude 20º S. Partialmelting of G2 granites originated peraluminous leucogranites (G3 Suite) from the late- to post-collisionalstages. A set of late structures, and the post-collisional intrusions of the S-type G4 Suite (535-500 Ma) andI-type G5 Suite (520-490 Ma) are related to the gravitational collapse of the orogen. The location of themagmatic arc, roughly parallel to the zone with ophiolite slivers, from the 17º30’ S latitude southwardssuggests that oceanic crust only developed along the southern segment of the precursor basin of the Araçuaí-West-Congo Orogen. This basin was carved, like a large gulf partially floored by oceanic crust, into the SãoFrancisco-Congo Paleocontinent, but paleogeographic reconstructions show that the Bahia-Gabon cratonicbridge (located to the north of the Araçuaí Orogen) subsisted since at least 1 Ga until the Atlantic opening.This uncommon geotectonic scenario inspired the concept of confined orogen, quoted as a new type ofcollisional orogen in the international literature, and the appealing nutcracker tectonic model to explain theAraçuaí-West-Congo Orogen evolution. 

1993 ◽  
Vol 130 (5) ◽  
pp. 647-656 ◽  
Author(s):  
T. C. Pharaoh ◽  
T. S. Brewer ◽  
P. C. Webb

AbstractDeep boreholes show that plutonic and volcanic igneous rocks comprise an important component of the Caledonian basement in eastern England. The isotopic compositions of these rocks reveal that many of them are of late Ordovician age (440–460 Ma), and their geochemical compositions suggest calc–alkaline affinities. The intermediate (diorite-tonalite) plutonic rocks are associated with a prominent northwest–southeast trending belt of aeromagnetic anomalies extending from Derby to St Ives, Hunts., which is interpreted to work the plutonic core of a calc-alkaline magmatic arc. It is inferred that this arc was generated by the subduction of oceanic lithosphere, possibly from the Tornquist Sea, in a south or southwest direction beneath the Midlands Microcraton in late Ordovician times. The age and geochemical composition of concealed Ordovician volcanic rocks in eastern England, and hypabyssal intrusions of the Midlands Minor Intrusive Suite in central England, is compatible with such a hypothesis.


Author(s):  
L. T. Silver ◽  
B. W. Chappell

ABSTRACTThe Peninsular Ranges Batholith of southern and Baja California is the largest segment of a Cretaceous magmatic arc that was once continuous from northern California to southern Baja California. In this batholith, the emplacement of igneous rocks took place during a single sequence of magmatic activity, unlike many of the other components of the Cordilleran batholiths which formed during successive separate magmatic episodes. Detailed radiometric dating has shown that it is a composite of two batholiths. A western batholith, which was more heterogeneous in composition, formed as a static magmatic arc between 140 and 105 Ma and was intrusive in part into related volcanic rocks. The eastern batholith formed as a laterally transgressing arc which moved away from those older rocks between 105 and 80 Ma, intruding metasedimentary rocks. Rocks of the batholith range from undersaturated gabbros through to felsic granites, but tonalite is the most abundant rock throughout. Perhaps better than elsewhere in the Cordillera, the batholith shows beautifully developed asymmetries in chemical and isotopic properties. The main gradients in chemical composition from W to E are found among the trace elements, with Ba, Sr, Nb and the light rare earth elements increasing by more than a factor of two, and P, Rb, Pb, Th, Zn and Ga showing smaller increases. Mg and the transition metals decrease strongly towards the E, with Sc, V and Cu falling to less than half of their value in the most westerly rocks. Oxygen becomes very systematically more enriched in18O from W to E and the Sr, Nd and Pb isotopic systems change progressively from mantle values in the W to a more evolved character on the eastern side of the batholith. In detail the petrogenesis of the Peninsular Ranges Batholith is not completely understood, but many general aspects of the origin are clear. The exposed rocks, particularly in the western batholith, closely resemble those of present day island arcs, although the most typical and average tonalitic composition is distinctly more felsic than the mean quartz diorite or mafic andesite composition of arcs. Chemical and isotopic properties of the western part of the batholith indicate that it formed as the root of a primitive island arc on oceanic lithosphere at a convergent plate margin. Further E, the plutonic rocks appear to have been derived by partial melting from deeper sources of broadly basaltic composition at subcrustal levels. The compositional systematics of the batholith do not reflect a simple mixing of various end-members but are a reflection of the differing character of the source regions laterally and vertically away from the pre-Cretaceous continental margin.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2009 ◽  
Vol 147 (2) ◽  
pp. 193-205 ◽  
Author(s):  
MANUEL SUÁREZ ◽  
RITA DE LA CRUZ ◽  
MICHAEL BELL ◽  
ALAIN DEMANT

AbstractThe Mesozoic Austral Basin of Patagonia, in southwestern Gondwana, experienced a major tectonic segmentation during Aptian times. Sometime between 121 and 118 Ma (Aptian), the northern part of the Austral Basin, known as the Aisén Basin or Río Mayo Embayment, was inverted, with the sediments overlain by calc-alkaline subaerial volcanic rocks of Aptian to Maastrichtian age. In the southern segment of the Austral Basin, known as the Magallanes Basin, predominantly marine sediments accumulated until Cenozoic times in a back-arc position, relative to a magmatic arc located to the west. The subduction-related N–S-trending volcanic chains of both segments were geographically displaced during Aptian to Late Cretaceous times. In the Aisén segment north of ~49–50° S, the volcanic chain was located further east than the coeval arc in the Magallanes segment. A transform fault connected the trenches of both segments, with the Aisén segment dipping at a shallower angle than the Magallanes segment.


2013 ◽  
Author(s):  
Tatiana Gonçalves-Dias ◽  
Antônio Carlos Pedrosa-Soares ◽  
Ivo Antônio Dussin ◽  
Fernando Flecha de Alkmim ◽  
Fabrício Andrade Caxito ◽  
...  

O Complexo Jequitinhonha, situado no nordeste de Minas Gerais, é uma das unidades metassedimentares mais extensas do Orógeno Araçuaí. Na área-tipo, situada na região de Jequitinhonha -Almenara, este complexo consiste de paragnaisse peraluminoso (kinzigítico) migmatizado, com intercalações de quartzito, grafita gnaisse e rocha calcissilicática. Os dados isotópicos U-Pb (LA-ICP-MS) de 80 grãos detríticos de zircão de uma amostra de quartzito, coletada em corte da BR-367 cerca de 12 km a SW de Almenara, permitem identificar seis principais intervalos de idades, cujas médias das modas sugerem as seguintes fontes de sedimentos: o embasamento São Francisco-Congo (2541 ± 8 Ma e 2044 ± 6 Ma), o sistema Espinhaço-Chapada Diamantina (1819 ± 6 Ma, 1487 ± 5 Ma e 1219 ± 3 Ma) e o sistema de rifteamento Noqui-Zadiniano-Mayumbiano-Salto da Divisa (956 ± 4 Ma). A idade máxima de sedimentação em 898 ± 8 Ma é dada pelo zircão mais novo. Os espectros de idades desta amostra do Complexo Jequitinhonha e de rochas do Grupo Macaúbas são muito similares, indicando correlação entre estas unidades. Contudo, no Complexo Jequitinhonha inexiste evidência de glaciação. Assim, o Complexo Jequitinhonha na área-tipo é interpretado como depósito de margem passiva da bacia precursora do Orógeno Araçuaí, mais novo que a glaciação Macaúbas e, portanto, equivalente às formações Chapada Acauã Superior e Ribeirão da Folha.Palavras-chave: Complexo Jequitinhonha, geocronologia U-Pb, Orógeno AraçuaíABSTRACT: MAXIMUM SEDIMENTATION AGE AND PROVENANCE OF THE JEQUITINHONHA COMPLEX IN THE TYPE-AREA (ARAÇUAÍ OROGEN): FIRST U-PB (LA-ICP-MS) DATA FROM DETRITAL ZIRCON GRAINS.The Jequitinhonha Complex is one of the most extensive metasedimentary units of the Araçuaí Orogen. In the type-area, located in the Jequitinhonha-Almenara region, this complex includes migmatized peraluminous (kinzigitic) paragneiss with intercalations of quartzite, graphite gneiss and calcsilicate rock. U-Pb (LA-ICP-MS) data from 80 detrital zircon grains extracted from a quartzite sample, collected in a BR-367 road cut around 12 km SW from Almenara, yielded six main age intervals, which mode mean values suggest the following sediment sources: the São Francisco-Congo basement (2541 ± 8 Ma and 2044 ± 6 Ma), the Espinhaço-Chapada Diamantina system (1819 ± 6 Ma, 1487 ± 5 Ma and 1219 ± 3 Ma), and the Noqui-Zadinian-Mayumbian-Salto da Divisa rift system (956 ± 4 Ma). The maximum sedimentation age of 898 ± 8 Ma is constrained by the youngest zircon grain. Spectra of detrital zircon ages for this sample of the Jequitinhonha Complex and rocks of the Macaúbas Group are very similar and suggest a correlation between these units. However, this complex shows no evidence of glaciation. Therefore, the Jequitinhonha Complex in its type-area is interpreted as a passive margin deposit of the precursor basin of the Araçuaí Orogen, younger than the Macaúbas glaciation and, thus, equivalent of the Upper Chapada Acauã and Ribeirão da Folha formations.Keywords: Jequitinhonha Complex, U-Pb geochronology, Araçuaí Orogen


1999 ◽  
Vol 36 (7) ◽  
pp. 1083-1109 ◽  
Author(s):  
Wouter Bleeker ◽  
John WF Ketchum ◽  
Valerie A Jackson ◽  
Michael E Villeneuve

New field and geochronological data are used to define the distribution of Mesoarchean basement rocks in the south-central Slave Province. This distribution reflects a single contiguous basement terrane that we propose to call the Central Slave Basement Complex. It shows a structural topology that is internally consistent and compatible with known regional folding and faulting events. A sample of a proposed basement gneiss below the Courageous Lake greenstone belt, central Slave Province, has been dated by U-Pb methods and yields an age of 3325 ± 8 Ma, consistent with the new basement distribution. This sample also contains 2723 ± 3 Ma metamorphic zircon and ca. 2680 Ma titanite. The Central Slave Basement Complex is overlain by a thin, discontinuous, but distinctive cover sequence that includes minor volcanic rocks, clastic sedimentary rocks, and banded iron formation. All previously known and some new occurrences of this distinctive cover sequence occur in the immediate stratigraphic hanging wall of the Central Slave Basement Complex, locally overlying a preserved in situ unconformity. We propose to call this post-2.93 Ga cover sequence the Central Slave Cover Group. It is perhaps best typified by detrital chromite-bearing, fuchsitic quartzites. Formal formation names are proposed for the spatially separate occurrences of the Central Slave Cover Group. Detrital zircon ages are presented for one of the formations of the Central Slave Cover Group, the Patterson Lake Formation, which occurs on the western flank of a local basement culmination known as the Sleepy Dragon Complex. The detrital zircon data provide evidence for two discrete basement sources dated at ca. 2943 Ma and ca. 3147-3160 Ma. These detrital ages reinforce the depositional link between the Central Slave Cover Group and underlying crystalline rocks of the Central Slave Basement Complex.


2016 ◽  
Vol 53 (2) ◽  
pp. 140-155 ◽  
Author(s):  
M.L. Golding ◽  
J.K. Mortensen ◽  
F. Ferri ◽  
J.-P. Zonneveld ◽  
M.J. Orchard

Triassic rocks of the Western Canada Sedimentary Basin (WCSB) have previously been interpreted as being deposited on the passive margin of North America. Recent detrital zircon provenance studies on equivalent Triassic rocks in the Yukon have suggested that these rocks were in part derived from the pericratonic Yukon–Tanana terrane and were deposited in a foreland basin related to the Late Permian Klondike orogeny. Detrital zircons within a number of samples collected from Triassic sediments of the WCSB throughout northeastern British Columbia and western Alberta suggest that the bulk of the sediment was derived from recycled sediments of the miogeocline along western North America, with a smaller but significant proportion coming from the Innuitian orogenic wedge in the Arctic and from local plutonic and volcanic rocks. There is also evidence of sediment being derived from the Yukon–Tanana terrane, supporting the model of terrane accretion occurring prior to the Triassic. The age distribution of detrital zircons from the WCSB in British Columbia is similar to those of the Selwyn and Earn sub-basins in the Yukon and is in agreement with previous observations that sediment deposited along the margin of North America during the Triassic was derived from similar source areas. Together these findings support the model of deposition within a foreland basin, similar to the one inferred in the Yukon. Only a small proportion of zircon derived from the Yukon–Tanana terrane is present within Triassic strata in northeastern British Columbia, which may be due to post-Triassic erosion of the rocks containing these zircons.


2003 ◽  
Vol 75 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Márcio M. Pimentel ◽  
Maria Helena B. M. Hollanda ◽  
Richard Armstrong

The Arenópolis volcano-sedimentary sequence is located in the southern part of the Goiás Magmatic Arc and includes a ca. 900 Ma calc-alkaline arc sequence made of volcanic rocks ranging in composition from basalts to rhyolites, metamorphosed under greenschist to amphibolite facies. Small calc-alkaline gabbro to granite sub-volcanic bodies are also recognized. The Morro do Baú intrusion is the largest of these intrusions, and is made of gabbros and diorites. Zircon grains separated from one gabbro sample and analyzed by SHRIMP I yielded the mean 206Pb/238U age of 890 +/- 8 Ma, indicating that the intrusion is roughly coeval or only slightly younger than the Arenópolis volcanics. Contrary to the metavolcanics, which are juvenile, the Nd isotopic composition of the Morro do Baú gabbro indicates strong contamination with archean sialic material (T DM of 2.8 Ga and EpsilonNd(T) of -9.7), represented in the area by an allochthonous sliver of archean/paleoproterozoic gneisses (Ribeirão gneiss) which are the country-rocks for the gabbro/dioritic intrusion. The emplacement age of ca. 890 Ma represents a minimum age limit for the tectonic accretion of the gneiss sliver to the younger rocks of the Arenópolis sequence. The data suggest that this happened early in the evolution of the Goiás Magmatic Arc, between ca. 920 and 890 Ma.


1986 ◽  
Vol 123 (3) ◽  
pp. 227-236 ◽  
Author(s):  
N. J. Soper

AbstractThe Siluro–Devonian suite of granitic plutons in the British Caledonides known as the Newer Granites, together with their associated extrusive rocks, represent one of the most extensively researched examples of calc-alkaline magmatism apparently related to orogeny. Although recent chemical studies have credibly interpreted some of the Scottish intrusions and volcanic rocks as part of a continental-margin magmatic arc generated by the subduction of lapetus oceanic lithosphere beneath Laurentia, insurmountable problems of distribution and timing arise when attempts are made to relate the magmatic activity as a whole to a traditional two-plate collision model for the orogeny.Newer Granite magmatism is here discussed in the context of more mobilistic models for the post-Grampian evolution of the British Caledonides which involve E–W closure between Laurentia and Baltica, terminated by collision in the Silurian, followed by the northward accretion of Gondwana-derived terranes in the early Devonian. The former produced the Main Caledonian tectonometamorphism of the Northern Highlands of Scotland, the latter the Late Caledonian deformation of the slate belts in the paratectonic Caledonides. These models imply much more complex convergence geometries which can, in principle, account for the whole Newer Granite suite as a series of subduction-generated magmatic arcs overlapping in space and time.The model proposed involves three late Caledonian magmatic arcs in addition to the Ordovician ‘Borrowdale arc’ which is not considered in this paper. One is related to Laurentia–Baltica convergence with westward subduction beneath the Scottish sector of the Laurentian margin in the Ordovician and Early Silurian, which generated the early members of the Newer Granite suite in the Highlands; a second is related to northward Silurian–early Devonian subduction at the Solway Line, which generated the younger Newer Granites and volcanic rocks north of the Highland Border; and a third, related to northward accretion of the Armorican terrane in early Devonian time, produced intrusive and extrusive magmatism as far south as Southeast Ireland and the English Midlands.


Sign in / Sign up

Export Citation Format

Share Document