scholarly journals Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheryl Q. E. Lee ◽  
Baptiste Kerouanton ◽  
Sonia Chothani ◽  
Shan Zhang ◽  
Ying Chen ◽  
...  

AbstractMito-SEPs are small open reading frame-encoded peptides that localize to the mitochondria to regulate metabolism. Motivated by an intriguing negative association between mito-SEPs and inflammation, here we screen for mito-SEPs that modify inflammatory outcomes and report a mito-SEP named “Modulator of cytochrome C oxidase during Inflammation” (MOCCI) that is upregulated during inflammation and infection to promote host-protective resolution. MOCCI, a paralog of the NDUFA4 subunit of cytochrome C oxidase (Complex IV), replaces NDUFA4 in Complex IV during inflammation to lower mitochondrial membrane potential and reduce ROS production, leading to cyto-protection and dampened immune response. The MOCCI transcript also generates miR-147b, which targets the NDUFA4 mRNA with similar immune dampening effects as MOCCI, but simultaneously enhances RIG-I/MDA-5-mediated viral immunity. Our work uncovers a dual-component pleiotropic regulation of host inflammation and immunity by MOCCI (C15ORF48) for safeguarding the host during infection and inflammation.

Author(s):  
Harvey B. Sarnat ◽  
José Marín-García

ABSTRACT:Muscle biopsy provides the best tissue to confirm a mitochondrial cytopathy. Histochemical features often correlate with specific syndromes and facilitate the selection of biochemical and genetic studies. Ragged-red fibres nearly always indicate a combination defect of respiratory complexes I and IV. Increased punctate lipid within myofibers is a regular feature of Kearns-Sayre and PEO, but not of MELAS and MERRF. Total deficiency of succinate dehydrogenase indicates a severe defect in Complex II; total absence of cytochrome-c-oxidase activity in all myofibres correlates with a severe deficiency of Complex IV or of coenzyme-Q10. The selective loss of cytochrome-c-oxidase activity in scattered myofibers, particularly if accompanied by strong succinate dehydrogenase staining in these same fibres, is good evidence of mitochondrial cytopathy and often of a significant mtDNA mutation, though not specific for Complex IV disorders. Glycogen may be excessive in ragged-red zones. Ultrastructure provides morphological evidence of mitochondrial cytopathy, in axons and endothelial cells as well as myocytes. Abnormal axonal mitochondria may contribute to neurogenic atrophy of muscle, a secondary chronic feature. Quantitative determinations of respiratory chain enzyme complexes, with citrate synthase as an internal control, confirm the histochemical impressions or may be the only evidence of mitochondrial disease. Biological and technical artifacts may yield falsely low enzymatic activities. Genetic studies screen common point mutations in mtDNA. The brain exhibits characteristic histopathological alterations in mitochondrial diseases. Skin biopsy is useful for mitochondrial ultrastructure in smooth erector pili muscles and axons; skin fibroblasts may be grown in culture. Mitochondrial alterations occur in many nonmitochondrial diseases and also may be induced by drugs and toxins.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Rimpy Dhingra ◽  
Victoria Margulets ◽  
Davinder Jassal ◽  
Gerald Dorn II ◽  
Lorrie A. Kirshenbaum

Doxorubicin is known for its cardiotoxic effects and inducing cardiac failure, however, the underlying mechanisms remain cryptic. Earlier we established the inducible - death protein, Bcl-2-like Nineteen- Kilodalton- Interacting - Protein 3 (Bnip3) to be crucial for disrupting mitochondrial function and inducing cell death of cardiac myocytes. Whether Bnip3 underlies cardiotoxic effects of doxorubicin toxicity is unknown. Herein we demonstrate a novel signaling pathway that functionally links activation and preferential mitochondrial targeting of Bnip3 to the cardiotoxic properties of doxorubicin. Perturbations to mitochondria including increased calcium loading, ROS, loss of αΨm and mPTP opening were observed in cardiac myocytes treated with doxorubicin. In mitochondria, Bnip3 forms strong association with Cytochrome c oxidase subunit1 (COX1) of respiratory chain and displaces uncoupling protein 3 (UCP3) resulting in increased ROS production, decline in maximal and reserved respiration capacity and cell viability. Impaired mitochondrial function was accompanied by an accumulated increase in autophagosomes and necrosis demonstrated by increase release of LDH, cTnT and loss of nuclear High Mobility Group Protein 1 (HMGB-1) immunoreactivity. Interestingly, pharmacological or genetic inhibition of autophagy with 3-methyl adenine (3-MA), or Atg7 knock-down suppressed necrotic cell death induced by doxorubicin. Loss of function of Bnip3 restored UCP3-COX complexes, mitochondrial respiratory integrity and abrogated necrotic cell death induced by doxorubicin. Mice germ-line deficient for Bnip3 were resistant to doxorubicin cardiotoxicity displaying normal mitochondrial morphology, cardiac function and survival rates comparable to vehicle treated mice. The findings of the present study demonstrate that doxorubicin provokes maladaptive autophagy and necrotic cell death of ventricular myocytes that is mutually dependent and obligatorily linked to Bnip3.


2019 ◽  
Vol 08 (03) ◽  
pp. 172-178 ◽  
Author(s):  
Hicham Mansour ◽  
Sandra Sabbagh ◽  
Sami Bizzari ◽  
Stephany El-Hayek ◽  
Eliane Chouery ◽  
...  

AbstractCytochrome c oxidase deficiency is caused by mutations in any of at least 30 mitochondrial and nuclear genes involved in mitochondrial complex IV biogenesis and structure, including the recently identified PET100 gene. Here, we report two families, of which one is consanguineous, with two affected siblings each. In one family, the siblings presented with developmental delay, seizures, lactic acidosis, abnormal brain magnetic resonance imaging, and low muscle mitochondrial complex IV activity at 30%. In the other family, the two siblings, now deceased, had a history of global developmental delay, failure to thrive, muscular hypotonia, seizures, developmental regression, respiratory insufficiency, and lactic acidosis. By whole exome sequencing, a missense mutation in exon 1 of the PET100 gene (c.3G > C; [p.Met1?]) was identified in both families. A review of the clinical description and literature is discussed, highlighting the importance of this variant in the Lebanese population.


Genome ◽  
2020 ◽  
Vol 63 (6) ◽  
pp. 291-305 ◽  
Author(s):  
Cameron M. Nugent ◽  
Tyler A. Elliott ◽  
Sujeevan Ratnasingham ◽  
Sarah J. Adamowicz

Biological conclusions based on DNA barcoding and metabarcoding analyses can be strongly influenced by the methods utilized for data generation and curation, leading to varying levels of success in the separation of biological variation from experimental error. The 5′ region of cytochrome c oxidase subunit I (COI-5P) is the most common barcode gene for animals, with conserved structure and function that allows for biologically informed error identification. Here, we present coil ( https://CRAN.R-project.org/package=coil ), an R package for the pre-processing and frameshift error assessment of COI-5P animal barcode and metabarcode sequence data. The package contains functions for placement of barcodes into a common reading frame, accurate translation of sequences to amino acids, and highlighting insertion and deletion errors. The analysis of 10 000 barcode sequences of varying quality demonstrated how coil can place barcode sequences in reading frame and distinguish sequences containing indel errors from error-free sequences with greater than 97.5% accuracy. Package limitations were tested through the analysis of COI-5P sequences from the plant and fungal kingdoms as well as the analysis of potential contaminants: nuclear mitochondrial pseudogenes and Wolbachia COI-5P sequences. Results demonstrated that coil is a strong technical error identification method but is not reliable for detecting all biological contaminants.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Abhishek Aich ◽  
Cong Wang ◽  
Arpita Chowdhury ◽  
Christin Ronsör ◽  
David Pacheu-Grau ◽  
...  

Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines.


2010 ◽  
Vol 298 (3) ◽  
pp. R608-R616 ◽  
Author(s):  
N. T. Frick ◽  
J. S. Bystriansky ◽  
Y. K. Ip ◽  
S. F. Chew ◽  
J. S. Ballantyne

We examined some of the potential mechanisms lungfish ( Protopterus dolloi ) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed (∼10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi , the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a ∼2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi , and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi .


Sign in / Sign up

Export Citation Format

Share Document