scholarly journals Universal scaling laws of keyhole stability and porosity in 3D printing of metals

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhengtao Gan ◽  
Orion L. Kafka ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Lichao Fang ◽  
...  

AbstractMetal three-dimensional (3D) printing includes a vast number of operation and material parameters with complex dependencies, which significantly complicates process optimization, materials development, and real-time monitoring and control. We leverage ultrahigh-speed synchrotron X-ray imaging and high-fidelity multiphysics modeling to identify simple yet universal scaling laws for keyhole stability and porosity in metal 3D printing. The laws apply broadly and remain accurate for different materials, processing conditions, and printing machines. We define a dimensionless number, the Keyhole number, to predict aspect ratio of a keyhole and the morphological transition from stable at low Keyhole number to chaotic at high Keyhole number. Furthermore, we discover inherent correlation between keyhole stability and porosity formation in metal 3D printing. By reducing the dimensions of the formulation of these challenging problems, the compact scaling laws will aid process optimization and defect elimination during metal 3D printing, and potentially lead to a quantitative predictive framework.

2020 ◽  
Author(s):  
Zhengtao Gan ◽  
Orion Kafka ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Lichao Fang ◽  
...  

Abstract We leverage ultrahigh-speed synchrotron x-ray imaging and high-fidelity multiphysics modeling to identify strikingly simple yet universal scaling laws for keyhole stability and porosity in metal three-dimensional (3D) printing. The laws apply broadly and remain accurate for different materials, processing conditions, and printing machines. We define a new dimensionless number, the Keyhole number, to predict aspect ratio of a keyhole and the morphological transition from stable at low Keyhole number to chaotic at high Keyhole number. Furthermore, we discover inherent correlation between keyhole stability and porosity formation in metal 3D printing. By reducing the dimensions of the formulation of these challenging problems, the compact scaling laws will aid process optimization and defect elimination during metal 3D printing, and potentially lead to a quantitative predictive framework.


2020 ◽  
Author(s):  
Alexandre C. Silva ◽  
Alexandre Cardoso ◽  
Edgard A. Lamounier Jr ◽  
Camilo L. Barreto Jr ◽  
Diogo M. Azevedo ◽  
...  

This project shows the results obtained from a new strategy based on Virtual Reality techniques, which intends to minimize the issues caused on the operation of electric power substations due to the lack of spatial and functional information on the traditional operation interfaces. For this purpose, a three-dimensional interactive virtual reality environment was built in a realistic and accurate way regarding a energy electric company of Minas Gerais – Brazil (CEMIG) substation and afterwards implanted it in its operation center for tasks related to its functioning. Lastly, tests were applied to the operators to obtain results aiming at the contextualized problems.


Healthcare ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 103 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Lin

Three-dimensional (3D) printing has great potential for establishing a ubiquitous service in the medical industry. However, the planning, optimization, and control of a ubiquitous 3D printing network have not been sufficiently discussed. Therefore, this study established a collaborative and ubiquitous system for making dental parts using 3D printing. The collaborative and ubiquitous system split an order for the 3D printing facilities to fulfill the order collaboratively and forms a delivery plan to pick up the 3D objects. To optimize the performance of the two tasks, a mixed-integer linear programming (MILP) model and a mixed-integer quadratic programming (MIQP) model are proposed, respectively. In addition, slack information is derived and provided to each 3D printing facility so that it can determine the feasibility of resuming the same 3D printing process locally from the beginning without violating the optimality of the original printing and delivery plan. Further, more slack is gained by considering the chain effect between two successive 3D printing facilities. The effectiveness of the collaborative and ubiquitous system was validated using a regional experiment in Taichung City, Taiwan. Compared with two existing methods, the collaborative and ubiquitous 3D printing network reduced the manufacturing lead time by 45% on average. Furthermore, with the slack information, a 3D printing facility could make an independent decision about the feasibility of resuming the same 3D printing process locally from the beginning.


2013 ◽  
Vol 340 ◽  
pp. 824-828
Author(s):  
Tong Qiang Li ◽  
Shu Guo Wang

CPU uses STM32F103RBT6 as core human thermal infrared sensors, ultrasonic sensors and temperature sensors as detection systems, motion control module as the power system, real-time monitoring and control system. A wireless data communication system and wireless audio and video transmission system as robot "ears" and "eyes", so that a robot is capable of all-round, three-dimensional "feel" the environment, man-to make accurate judgments and control.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4781
Author(s):  
Soohyun Bae ◽  
Min-Ho Hong ◽  
Hyunwoo Lee ◽  
Cheong-Hee Lee ◽  
Mihee Hong ◽  
...  

Three-dimensional (3D) printing technologies have been widely used to manufacture crowns and frameworks for fixed dental prostheses. This systematic review and meta-analysis aimed to assess the reliability of the marginal fit of 3D-printed cobalt-chromium-based fixed dental prostheses in comparison to conventional casting methods. Articles published until 25 June 2020, reporting the marginal fit of fixed prostheses fabricated with metal 3D printing, were searched using electronic literature databases. After the screening and quality assessment, 21 eligible peer-reviewed articles were selected. Meta-analysis revealed that the marginal gap of the prostheses manufactured using 3D printing was significantly smaller compared to that manufactured using casting methods (standard mean difference (95% CI): −0.92 (−1.45, −0.38); Z = −3.37; p = 0.0008). The estimated difference between the single and multi-unit types did not differ significantly (p = 0.3573). In the subgroup analysis for the measurement methods, the tendency of marginal discrepancy between the 3D printing and casting groups was significantly different between articles that used direct observation and those that used the silicone replica technique (p < 0.001). Metal 3D printing technologies appear reliable as an alternative to casting methods in terms of the fit of the fixed dental prostheses. In order to analyze the factors influencing manufacturing and confirm the results of this review, further controlled laboratory and clinical studies are required.


2021 ◽  
Author(s):  
Soo Young Cho ◽  
Dong Hae Ho ◽  
Yoon Young Choi ◽  
Soomook Lim ◽  
Sungjoo Lee ◽  
...  

Abstract Recent advances in metal additive manufacturing (AM) have provided new opportunities for the design of prototypes of metal-based products and personalization of products for the fourth industrial revolution. Although metal AM, which enables fabrication of varied and sophisticated objects, is in the spotlight as a next-generation printing method, environmental issues arising during the printing process need to be addressed before it can be commercialized. Here, we demonstrate a novel mechanism for binder jetting three-dimensional (3D) printing of metals that is based on chelation triggered by an eco-friendly binding agent. Sodium salts of fruit acid chelators are used to form stable metal-chelate bridges between metal particles, which enable elaborate metal 3D printing. The strength of the 3D-printed object is improved by post-treatment, through a reduction in the porosity between the metal particles. Finally, the compatibility of the novel printing mechanism with a variety of metals is demonstrated via successful 3D printing of objects of various shapes using various metal powders. The proposed mechanism for metal 3D printing is expected to open up new avenues for the development of domestic-scale desktop 3D printing of metals.


2019 ◽  
pp. 23-32
Author(s):  
Aleksandra Kowalska ◽  
Robert Banasiak ◽  
Andrzej Romanowski ◽  
Dominik Sankowski

Nowadays, the optimization of energy consumption and resources is one of the most urgent topics in worldwide industry. The energy consumption monitoring and control in various multiphase flow industrial applications, where a proper flow characteristic and an optimal phase mixture control is crucial, is hard to perform due to the physical and chemical complexity of the processes. The Electrical Capacitance Tomography (ECT) is one of the relatively cheap non-invasive measurement methods that can help in the monitoring and control of optimal energy and resources dozing in industrial processes. ECT diagnostics systems use unique sensors that can non-intrusively detect spatial capacitance changes caused by spatial changes in the electrical permittivity of industrial process components. One of the latest ECT extensions is a three-dimensional measurement strategy that uses a multilayer structure of the capacitance sensor. In this paper, the authors propose a novel approach to the 3D ECT sensors fabrication process that uses 3D computer modelling and 3D printing to easily get any sensor shape, electrode layout, scale and shielding strategy. This study compares the measurement abilities of a 3D ECT sensor fabricated using a traditional hand-made technique with the 3D printed device. The results have proven the potential of the new 3D print-based sensor regarding its significant fabrication time reduction as well as the improvement of the overall 3D ECT sensor measurement accuracy and stability.


Sign in / Sign up

Export Citation Format

Share Document