scholarly journals MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiaozhi Wei ◽  
Sandra Pinho ◽  
Shuxian Dong ◽  
Halley Pierce ◽  
Huihui Li ◽  
...  

AbstractHaematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid potential. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. Our results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.

2020 ◽  
Author(s):  
Qiaozhi Wei ◽  
Sandra Pinho ◽  
Shuxian Dong ◽  
Halley Pierce ◽  
Fumio Nakahara ◽  
...  

Abstract Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island1, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid commitment. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and function and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs, but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. These results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1335-1335
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Brie R. Brown ◽  
Whitney D. Nelson ◽  
...  

Abstract Abstract 1335 Fanconi anemia (FA) is associated with a hereditary predisposition to bone marrow failure. The proteins encoded by the FANC genes are primarily involved in DNA repair responses through the formation of a large, multisubunit complex that has E3 ubiquitin ligase activity (Annual Review of Genetics 2009;43:223). FA hematopoietic stem cells display defective stem cell properties and limited replicative potential. However, the molecular basis for how a FA genetic background contributes to those defects remains poorly understood. Here we provide evidence that FANCL, which has E3 ubiquitin ligase activity, enhances beta-catenin activity (Figure A) and protein expression. Beta-catenin is a nuclear effector of canonical Wnt signaling. The Wnt/beta-catenin pathway is active in normal hematopoietic stem cells in the native bone marrow environment and disruption of this signaling pathway results in defective hematopoietic stem cells (Nature 2003;423:409). To test whether FANCL positively regulates beta-catenin through its ubiquitination activity, we performed cell-based ubiquitination assays. We show that FANCL functionally ubiquitinates beta-catenin (Figure B) and that ubiquitin chain extension can occur via non-lysine-48 ubiquitin linkages. Accumulating evidence reveal diverse, non-proteolytic biological roles for proteins modified by atypical ubiquitin chains (EMBO Reports 2008;9:536). Our data suggests that FANCL may enhance the protein function of beta-catenin via ubiquitination with atypical ubiquitin chains. Importantly, we demonstrate that suppression of FANCL expression in human CD34+ cord blood stem cells reduces beta-catenin expression (Figure C) and multilineage progenitor expansion. These results demonstrate a role for the FA pathway in regulating Wnt/beta-catenin signaling. Therefore, diminished Wnt/beta-catenin signaling may be an important underlying molecular defect in FA hematopoietic stem cells leading to their accelerated loss. A, LEF-TCF-luciferase reporter assay showing increasing beta-catenin activity in 293FT cells with increasing FANCL expression compared with vector-control (VC) (n=4). B, Immunoprecipitation of beta-catenin in cells transfected with vector-control or FANCL and probed for hemagglutinin (HA)-tagged ubiquitin shows increased ubiquitinated forms of beta-catenin with FANCL expression (n=4). C, shRNA suppression of FANCL expression in CD34+ cord blood stem cells results in decreased beta-catenin expression compared with a scramble control (Scr) by immunofluorescence analysis (three different shRNA constructs, n=3 for each construct). Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Manami Hiraiwa ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Hemragul Sabit ◽  
Tetsuhiro Horie ◽  
...  

Abstract Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorgenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorgenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


2021 ◽  
Author(s):  
Manami Hiraiwa ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Hemragul Sabit ◽  
Tetsuhiro Horie ◽  
...  

AbstractGlioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorgenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorgenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Stefanie Kaech ◽  
Whitney D. Nelson ◽  
...  

Abstract Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34+ stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.


2005 ◽  
Vol 16 (11) ◽  
pp. 5433-5444 ◽  
Author(s):  
Yutaka Morita ◽  
Chie Kanei-Ishii ◽  
Teruaki Nomura ◽  
Shunsuke Ishii

Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to diverse proteins. The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. PIASy is the only known SUMO E3 ligase for c-Myb. Here, we report that TRAF7 binds to c-Myb and stimulates its sumoylation. TRAF7 bound to the DNA-binding domain of c-Myb via its WD40 repeats. TRAF7 has an E3 ubiquitin ligase activity for self-ubiquitination, but TRAF7 also stimulated the sumoylation of c-Myb at Lys-523 and Lys-499, which are the same sites as those used for PIASy-induced sumoylation. TRAF7 inhibited trans-activation induced by wild-type c-Myb, but not by the sumoylation site mutant of c-Myb. The expression of both c-myb and TRAF7 was down-regulated during differentiation of M1 cells. Endogenous TRAF7 localized to both the cytoplasm and nucleus of M1 cells. Consistent with this, significant amounts of sumoylated c-Myb were found in the cytoplasm of M1 cells, whereas nonsumoylated c-Myb was found predominantly in the nucleus. Overexpressed TRAF7 was localized in the cytoplasm of CV-1 cells, and sequestered c-Myb and SUMO1 in the cytosol, whereas PIASy was localized in the nucleus. Thus, TRAF7 negatively regulates c-Myb activity by sequestering c-Myb to the cytosol via sumoylation.


Oncogene ◽  
2010 ◽  
Vol 29 (43) ◽  
pp. 5818-5827 ◽  
Author(s):  
T Qian ◽  
J-Y Lee ◽  
J-H Park ◽  
H-J Kim ◽  
G Kong

Plant Science ◽  
2007 ◽  
Vol 173 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Bong Soo Park ◽  
Wan Gyu Sang ◽  
Song Yion Yeu ◽  
Yang Do Choi ◽  
Nam-Chon Paek ◽  
...  

2021 ◽  
Author(s):  
◽  
Carla Coppola

In this study, I focused on a new family of receptors, called RMRs (Receptor-like Membrane RING-H2) and I tried to investigate their role in the moss Physcomitrium patens Mitten (previously Physcomitrella patens). There is some evidence that in Angiosperms, RMRs are vacuolar receptors for the neutral/storage vacuole that is a compartment where storage proteins and metabolites are accumulated during seeds development or in somatic tissues. It is distinguished from lytic vacuole which has the same functions as animal lysosomes. The five PpRMR genes have been knocked-out, yielding viable material without visible phenotype (Ayachi, 2012). A trafficking phenotype was described by Fahr (2017) who generated the construct Citrine-Cardosin (Ci-Card) composed of the fluorescent protein Citrine fused to the C-terminal vacuolar sorting determinant (ctVSD) from cardosin A (cardosin is addressed to the vacuole in higher plants —Pereira et al., 2013). The fusion protein was delivered to the central vacuole of PpWT but mistargeted in PpRMR-KO lines, indicating that the targeting of this protein to the vacuole depends on PpRMRs. The introduction of this thesis presents the plant endomembrane system, with particular attention to vacuolar transport and ubiquitylation. In the second chapter, I show the techniques used to attempt to detect PpRMRs by Western Blot: our failure may be due to a rapid degradation of these proteins, which could prevent their detection. In the third chapter, I focused on PpRMR2 involvement in ubiquitylation. We hypothesize that PpRMRs are E3 ligases because they are members of the PA-TM-RING protein family. Most of these proteins have an E3 ubiquitin ligase activity in animals (Seroogy et al., 2004; Borchers et al., 2002), for this reason, we think that plant PpRMRs could have this function as well, which could contribute to vacuolar targeting. Indeed, I could confirm that PpRMR2 has an E3 ubiquitin ligase activity. PpRMRs substrates are still unknown in moss thus we have analysed putative candidates supposing that they could be ubiquitylated by PpRMRs. We have tested this hypothesis through in vitro ubiquitylation assays, obtaining ambiguous results. In the fourth chapter, I show preliminary results about the visible phenotype of PpRMR-KO mutants: PpWT and PpRMR-KO lines displayed phenotypic differences in leafy gametophores, which were accentuated upon salt stress exposure. Lastly, I transformed the transgenic lines PpWT/Ci-Card and Pp5KO/Ci-Card with mutated versions of PpRMR2 and analysed their effect on vacuolar transport by confocal microscopy. For most of the constructions tested, the trafficking was perturbed in both lines. Only PpWT/Ci-Card expressing PpRMR2ΔSer (lacking the Serine-Rich motif) displayed a typical vacuolar pattern.


Sign in / Sign up

Export Citation Format

Share Document