scholarly journals Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hengwei Jin ◽  
Kuo Liu ◽  
Juan Tang ◽  
Xiuzhen Huang ◽  
Haixiao Wang ◽  
...  

AbstractDuring injury, monocytes are recruited from the circulation to inflamed tissues and differentiate locally into mature macrophages, with prior reports showing that cavity macrophages of the peritoneum and pericardium invade deeply into the respective organs to promote repair. Here we report a dual recombinase-mediated genetic system designed to trace cavity macrophages in vivo by intersectional detection of two characteristic markers. Lineage tracing with this method shows accumulation of cavity macrophages during lung and liver injury on the surface of visceral organs without penetration into the parenchyma. Additional data suggest that these peritoneal or pleural cavity macrophages do not contribute to tissue repair and regeneration. Our in vivo genetic targeting approach thus provides a reliable method to identify and characterize cavity macrophages during their development and in tissue repair and regeneration, and distinguishes these cells from other lineages.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1341
Author(s):  
Maria Cristina Bonferoni ◽  
Carla Caramella ◽  
Laura Catenacci ◽  
Bice Conti ◽  
Rossella Dorati ◽  
...  

Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.


2016 ◽  
Vol 4 (22) ◽  
pp. 3892-3902 ◽  
Author(s):  
Chin-Tsu Ma ◽  
Yi-Jhen Wu ◽  
Han Hsiang Huang ◽  
Pei-Leun Kang ◽  
Kuan Yin Hsiao ◽  
...  

Advances and improvements in mesenchymal stromal/stem cells (MSCs) and cell replacement therapies have been promising approaches to treat diabetes mellitus (DM) since their potent capacities for differentiation into various functional cells match the demands of tissue repair and regeneration.


2020 ◽  
Vol 3 (7) ◽  
pp. e202000743
Author(s):  
Sandra E Joppé ◽  
Loïc M Cochard ◽  
Louis-Charles Levros ◽  
Laura K Hamilton ◽  
Pierre Ameslon ◽  
...  

The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC–mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jianqun Ma ◽  
Kyle Holden ◽  
Jinhong Zhu ◽  
Haiying Pan ◽  
Yong Li

Three-dimensional (3D) engineered tissue constructs are a novel and promising approach to tissue repair and regeneration. 3D tissue constructs have the ability to restore form and function to damaged soft tissue unlike previous methods, such as plastic surgery, which are able to restore only form, leaving the function of the soft tissue often compromised. In this study, we seeded murine myoblasts (C2C12) into a collagen composite scaffold and cultured the scaffold in a roller bottle cell culture system in order to create a 3D tissue graftin vitro. The 3D graft createdin vitrowas then utilized to investigate muscle tissue repairin vivo. The 3D muscle grafts were implanted into defect sites created in the skeletal muscles in mice. We detected that the scaffolds degraded slowly over time, and muscle healing was improved which was shown by an increased quantity of innervated and vascularized regenerated muscle fibers. Our results suggest that the collagen composite scaffold seeded with myoblasts can create a 3D muscle graftin vitrothat can be employed for defect muscle tissue repairin vivo.


Author(s):  
R. B. Moyes ◽  
R. E. Droleskey ◽  
M. H. Kogut ◽  
J. R. DeLoach

Salmonella enteritidis (SE) is of great concern to the poultry industry due to the organism's ability to penetrate the intestinal mucosa of the laying hen and subsequently colonize the ovaries and yolk membrane. The resultant subclinical infection can lead to SE infection of raw eggs and egg products. Interference with the ability of the organism to invade has been linked to the activation and recruitment of inflammatory polymorphonuclear cells, heterophils, to the lamina propria of the intestinal tract.Recently it has been established that heterophil activation and increased resistance to SE organ invasion can be accomplished by the administration of SE-immune lymphokines (SE-ILK) obtained from supernatants of concanavalin-A stimulated SE immune T lymphocytes from SE hyperimmunized hens. Invasion of SE into the lamina propria provides a secondary signal for directing activated heterophils to the site of SE invasion.


Sign in / Sign up

Export Citation Format

Share Document