scholarly journals Room temperature electrically pumped topological insulator lasers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jae-Hyuck Choi ◽  
William E. Hayenga ◽  
Yuzhou G. N. Liu ◽  
Midya Parto ◽  
Babak Bahari ◽  
...  

AbstractTopological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.

2021 ◽  
Author(s):  
Jae-Hyuck Choi ◽  
William E. Hayenga ◽  
Yuzhou G. N. Liu ◽  
Midya Parto ◽  
Babak Bahari ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sheng-shi Li ◽  
Wei-xiao Ji ◽  
Chang-wen Zhang ◽  
Shu-jun Hu ◽  
Ping Li ◽  
...  

2016 ◽  
Vol 94 (3) ◽  
Author(s):  
Hui Wang ◽  
S. T. Pi ◽  
J. Kim ◽  
Z. Wang ◽  
H. H. Fu ◽  
...  

2014 ◽  
Vol 03 (01) ◽  
pp. 4-14
Author(s):  
APPN Editorial Team

Prof Shoucheng Zhang, a well-renowned Chinese-American physicist, is the JG Jackson and CJ Wood Professor at Stanford University. He is internationally recognised for his research in topological insulators, quantum spin Hall effect, spintronics and high temperature superconductivity. His notable awards include the top three prizes of international physics field, namely the prestigious Dirac Medal and Prize in 2012, the Oliver Buckley prize in 2012 and the Europhysics prize in 2010.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Zhang ◽  
Ryo Noguchi ◽  
Kenta Kuroda ◽  
Chun Lin ◽  
Kaishu Kawaguchi ◽  
...  

AbstractA quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs). However, the topological side surface is usually not cleavable and is thus hard to observe. Here, we visualize the topological states of the WTI candidate ZrTe5 by spin and angle-resolved photoemission spectroscopy (ARPES): a quasi-1D band with spin-momentum locking was revealed on the side surface. We further demonstrate that the bulk band gap is controlled by external strain, realizing a more stable WTI state or an ideal Dirac semimetal (DS) state. The highly directional spin-current and the tunable band gap in ZrTe5 will provide an excellent platform for applications.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba4625
Author(s):  
Saquib Shamim ◽  
Wouter Beugeling ◽  
Jan Böttcher ◽  
Pragya Shekhar ◽  
Andreas Budewitz ◽  
...  

The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials, which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large magnetization in conventional quantum anomalous Hall systems makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in (Hg,Mn)Te quantum wells. First, a previously unidentified quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of ~50 mT. Second, tuning toward the bulk p-regime, we resolve quantum Hall plateaus at fields as low as 20 to 30 mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe, and their occurrence at very low fields makes them an ideal candidate for realizing chiral Majorana fermions.


2009 ◽  
Vol 26 (6) ◽  
pp. 064211 ◽  
Author(s):  
Chen Ting ◽  
Hong Tao ◽  
Pan Jiao-Qing ◽  
Chen Wei-Xi ◽  
Cheng Yuan-Bing ◽  
...  

2016 ◽  
Vol 49 (5) ◽  
pp. 055305 ◽  
Author(s):  
Ya-ping Wang ◽  
Chang-wen Zhang ◽  
Wei-xiao Ji ◽  
Run-wu Zhang ◽  
Ping Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document