scholarly journals Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuhan Li ◽  
Shuo Song ◽  
Yuling Li ◽  
Chang Xu ◽  
Qiquan Luo ◽  
...  

AbstractHomogeneous earth-abundant metal catalysis based on well-defined molecular complexes has achieved great advance in synthetic methodologies. However, sophisticated ligand, hazardous activator and multistep synthesis starting from base metal salts are generally required for the generation of active molecular catalysts, which may hinder their broad application in large scale organic synthesis. Therefore, the development of metal cluster catalysts formed in situ from simple earth-abundant metal salts is of importance for the practical utilization of base metal resource, yet it is still in its infancy. Herein, a mixture of catalytic amounts of cobalt (II) iodide and potassium tert-butoxide is discovered to be highly active for selective hydroboration of vinylarenes and dihydroboration of nitriles, affording a good yield of diversified hydroboration products that without isolation can readily undergo further one pot transformations. It should be highlighted that the alkoxide-pinacolborane combination acts as an efficient activation strategy to activate cobalt (II) iodide for the generation of metastable heterotopic cobalt catalysts in situ, which is proposed to be catalytically active species.

2016 ◽  
Vol 6 (19) ◽  
pp. 7113-7121 ◽  
Author(s):  
Gregory K. Hodgson ◽  
Stefania Impellizzeri ◽  
Juan C. Scaiano

Heterogeneous catalysis holds distinct advantages over homogeneous catalysis; however, it is only truly advantageous if unaffected by metal ion leaching or in situ formation of a soluble catalytically active species.


2008 ◽  
Vol 8 (12) ◽  
pp. 6208-6222 ◽  
Author(s):  
Changzheng Wu ◽  
Yi Xie

Large-scale synthesis and assembly of meso-, micro- and nanostructured building blocks with the desired orientations are of great interest for the next-generation nanoarchitecture design. On the consideration that the traditional synthetic methodologies for nanostructures often produce tangled nanounits, how to align the nanounits into the ordered orientation at high production yield is a great challenge to current methods. The present review describes a facile and controllable way to grow and assemble the 3D hollow nanoarchitectures, with the utilization of the synergic effects of hollowing process from the self-produced templates and the highly anisotropic growth of nanounits of the target materials in one-pot reaction. In this process, the building block nanounits spontaneously in-situ form owing to their highly anisotropic internal structure, while the self-produced templates act as the supporter and growth-direction guidance for the in-situ formed nanounits. Therefore, the whole assembly process is simple, controllable and without the complicated manipulations. Herein, in the light of the different kinds of self-produced templates involved in the assembly process, recent developments based on the new synergic-assembly strategy are reviewed according to the classifications: (1) self-produced gas bubble template strategy; (2) self-produced homogeneous solid template strategy; (3) self-produced heterogeneous solid template strategy. Notably, the synergic-assembly methodology described in this review provides a newly essential way to construct and assemble nanoarchitectures facilely and controllably, and is also a crucial step for the next-generation of nanoarchitecture design in the near future. In conclusion, the challenges and prospects for the future are discussed.


2021 ◽  
Vol 17 ◽  
pp. 2906-2914
Author(s):  
Yuki Yamamoto ◽  
Akihiro Tabuchi ◽  
Kazumi Hosono ◽  
Takanori Ochi ◽  
Kento Yamazaki ◽  
...  

A simple and efficient method for α-brominating lactones that affords α-bromolactones under mild conditions using tetraalkylammonium hydroxide (R4N+OH−) as a base was developed. Lactones are ring-opened with Br2 and a substoichiometric amount of PBr3, leading to good yields of the corresponding α-bromocarboxylic acids. Subsequent intramolecular cyclization over 1 h using a two-phase system (H2O/CHCl3) containing R4N+OH− afforded α-bromo lactones in good yields. This method can be applied at the 10 mmol scale using simple operations. α-Bromo-δ-valerolactone, which is extremely reactive and difficult to isolate, could be isolated and stored in a freezer for about one week using the developed method. Optimizing the solvent for environmentally friendly large-scale syntheses revealed that methyl ethyl ketone (MEK) was as effective. In addition, in situ-generated α-bromo-δ-valerolactone was directly converted into a sulfur-substituted functional lactone without difficulty by reacting it with a sulfur nucleophile in one pot without isolation. This new bromination system is expected to facilitate the industrial use of α-bromolactones as important intermediates.


2021 ◽  
Author(s):  
Stefan Leisering ◽  
Alexandros Mavroskoufis ◽  
Patrick Voßnacker ◽  
Reinhold Zimmer ◽  
Mathias Christmann

A protecting-group-free synthesis of two endoperoxide natural products, plakortolide E and plakortolide I, is reported. Key-steps feature the use of earth-abundant transition metals, consisting of a vanadium-mediated epoxidation, an iron-catalyzed allylic substitution, and a cobalt-induced endoperoxide formation. Our approach combines redox-economy, chemoselective bond-forming reactions, and telescoping into one-pot operations to forge an overall efficient synthesis.


2021 ◽  
Author(s):  
Yalin Guo ◽  
Zhuang Ma ◽  
Binbin Jin ◽  
Guodong Yao ◽  
Jia Duo

Valorization of biomass to value-added platform compounds shows great potential to relieve the pressure on fossil energy consumption. Gamma (γ)-valerolactone (GVL) is a sustainable liquid for energy and carbon-based chemicals. Despite the numerous researches of investigation regarding the GVL synthesis from carbohydrate biomass, most of them involve the use of precious metals accompanying with the high-purity and high-pressure hydrogen, facing high cost in large-scale application and safety risk during the transportation and operation process. In this work, the cheap metal Fe was employed as a reductant for splitting water to produce hydrogen, and Raney Ni was used as a catalyst for in situ hydrogenation of obtained levulinic acid (LA) which is a key hydrolysate of cellulose to GVL. Cellulose was initially hydrolyzed to LA and then reduced to GVL without separation of other hydrolyzed intermediates of cellulose in one pot. The effect of reaction parameters on the yield of LA and GVL were studied for obtaining the optimal conditions. A 61.9 % yield of GVL from cellulose was achieved at mild hydrothermal conditions. This study provides an efficient approach for direct conversion of carbohydrate biomass to GVL with safe and abundant water as hydrogen source.


2021 ◽  
Author(s):  
Yalin Guo ◽  
Zhuang Ma ◽  
Binbin Jin ◽  
Guodong Yao ◽  
Jia Duo

Valorization of biomass to value-added platform compounds shows great potential to relieve the pressure on fossil energy consumption. Gamma (γ)-valerolactone (GVL) is a sustainable liquid for energy and carbon-based chemicals. Despite the numerous researches of investigation regarding the GVL synthesis from carbohydrate biomass, most of them involve the use of precious metals accompanying with the high-purity and high-pressure hydrogen, facing high cost in large-scale application and safety risk during the transportation and operation process. In this work, the cheap metal Fe was employed as a reductant for splitting water to produce hydrogen, and Raney Ni was used as a catalyst for in situ hydrogenation of obtained levulinic acid (LA) which is a key hydrolysate of cellulose to GVL. Cellulose was initially hydrolyzed to LA and then reduced to GVL without separation of other hydrolyzed intermediates of cellulose in one pot. The effect of reaction parameters on the yield of LA and GVL were studied for obtaining the optimal conditions. A 61.9 % yield of GVL from cellulose was achieved at mild hydrothermal conditions. This study provides an efficient approach for direct conversion of carbohydrate biomass to GVL with safe and abundant water as hydrogen source.


2021 ◽  
Author(s):  
Stefan Leisering ◽  
Alexandros Mavroskoufis ◽  
Patrick Voßnacker ◽  
Reinhold Zimmer ◽  
Mathias Christmann

A protecting-group-free synthesis of two endoperoxide natural products, plakortolide E and plakortolide I, is reported. Key-steps feature the use of earth-abundant transition metals, consisting of a vanadium-mediated epoxidation, an iron-catalyzed allylic substitution, and a cobalt-induced endoperoxide formation. Our approach combines redox-economy, chemoselective bond-forming reactions, and telescoping into one-pot operations to forge an overall efficient synthesis.


Synthesis ◽  
2018 ◽  
Vol 51 (05) ◽  
pp. 1115-1122 ◽  
Author(s):  
Sven Krieck ◽  
Philipp Schüler ◽  
Jan Peschel ◽  
Matthias Westerhausen

Calcium bis[bis(trimethylsilyl)amide] (Ca(HMDS)2) is a widely used reagent in diverse stoichiometric and catalytic applications. These processes necessitate a straightforward and large-scale access of this complex. Calcium does not react with primary and secondary amines, but the addition of excess bromoethane to a mixture of calcium turnings and amines in THF at room temperature yields the corresponding calcium bis(amides), calcium bromide and ethane. This in situ Grignard metalation method (iGMM) allows the preparation of calcium bis(amides) from secondary and primary trialkylsilyl-substituted amines and anilines on a multigram scale.1 Background2 The In Situ Grignard Metalation Method (iGMM)3 Properties of [(thf)2M(HMDS)2]4 Applications and Perspective


2021 ◽  
Author(s):  
Sheng Wang ◽  
Songqi Ma ◽  
Jianfan Qiu ◽  
Anping Tian ◽  
Qiong Li ◽  
...  

The huge amount of plastic waste is imperiling our daily life. Here, we designed a green and efficient large-scale one-pot method combining grafting and reversible cross-linking on a twin screw...


Author(s):  
Pran Gobinda Nandi ◽  
Pradhuman Kumar ◽  
Akshai Kumar

Inexpensive, earth-abundant and environmentally benign cobaltous chloride efficiently accomplishes the catalytic β-alkylation of alcohols in air at 140 °C. At higher loadings of cobaltous chloride (1 mol%) in the presence...


Sign in / Sign up

Export Citation Format

Share Document