scholarly journals Sondheimer oscillations as a probe of non-ohmic flow in WP2 crystals

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maarten R. van Delft ◽  
Yaxian Wang ◽  
Carsten Putzke ◽  
Jacopo Oswald ◽  
Georgios Varnavides ◽  
...  

AbstractAs conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR even when lMR ≫ d. We extract lMR from the Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices.

2021 ◽  
Author(s):  
Maarten van Delft ◽  
Yaxian Wang ◽  
Carsten Putzke ◽  
Jacopo Oswald ◽  
Georgios Varnavides ◽  
...  

Abstract As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR in micro-devices even when lMR>>d. This gives information on the bulk lMR complementary to quantum oscillations, which are sensitive to all scattering processes. We extract lMR from the Sondheimer amplitude in the topological semi-metal WP2, at elevated temperatures up to T~50 K, in a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the large bulk lMR and thus confirm that WP2 can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP2 at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices in studying non-ohmic electron flow.


2020 ◽  
Vol 61 (6) ◽  
Author(s):  
C E Schrank ◽  
K Gioseffi ◽  
T Blach ◽  
O Gaede ◽  
A Hawley ◽  
...  

Abstract We present a review of a unique non-destructive method for the real-time monitoring of phase transformations and nano-pore evolution in dehydrating rocks: transmission small- and wide-angle synchrotron X-ray scattering (SAXS/WAXS). It is shown how SAXS/WAXS can be applied to investigating rock samples dehydrated in a purpose-built loading cell that allows the coeval application of high temperature, axial confinement, and fluid pressure or flow to the specimen. Because synchrotron sources deliver extremely bright monochromatic X-rays across a wide energy spectrum, they enable the in situ examination of confined rock samples with thicknesses of ≤ 1 mm at a time resolution of order seconds. Hence, fast kinetics with reaction completion times of about hundreds of seconds can be tracked. With beam sizes of order tens to hundreds of micrometres, it is possible to monitor multiple interrogation points in a sample with a lateral extent of a few centimetres, thus resolving potential lateral spatial effects during dehydration and enlarging sample statistics significantly. Therefore, the SAXS/WAXS method offers the opportunity to acquire data on a striking range of length scales: for rock samples with thicknesses of ≤ 10-3 m and widths of 10-2 m, a lateral interrogation-point spacing of ≥ 10-5 m can be achieved. Within each irradiated interrogation-point volume, information concerning pores with sizes between 10-9 and 10-7 m and the crystal lattice on the scale of 10-10 m is acquired in real time. This article presents a summary of the physical principles underpinning transmission X-ray scattering with the aim of providing a guide for the design and interpretation of time-resolved SAXS/WAXS experiments. It is elucidated (1) when and how SAXS data can be used to analyse total porosity, internal surface area, and pore-size distributions in rocks on length scales from ∼1 to 300 nm; (2) how WAXS can be employed to track lattice transformations in situ; and (3) which limitations and complicating factors should be considered during experimental design, data analysis, and interpretation. To illustrate the key capabilities of the SAXS/WAXS method, we present a series of dehydration experiments on a well-studied natural gypsum rock: Volterra alabaster. Our results demonstrate that SAXS/WAXS is excellently suited for the in situ tracking of dehydration kinetics and the associated evolution of nano-pores. The phase transformation from gypsum to bassanite is correlated directly with nano-void growth on length scales between 1 and 11 nm for the first time. A comparison of the SAXS/WAXS kinetic results with literature data emphasises the need for future dehydration experiments on rock specimens because of the impact of rock fabric and the generally heterogeneous and transient nature of dehydration reactions in nature. It is anticipated that the SAXS/WAXS method combined with in situ loading cells will constitute an invaluable tool in the ongoing quest for understanding dehydration and other mineral replacement reactions in rocks quantitatively.


2018 ◽  
Vol 24 (S1) ◽  
pp. 1010-1011
Author(s):  
Will Harris ◽  
Hrishikesh Bale ◽  
Steve Kelly ◽  
Benjamin Hornberger

2011 ◽  
Vol 29 (9) ◽  
pp. 1655-1662 ◽  
Author(s):  
Q.-H. Zhang ◽  
M. W. Dunlop ◽  
M. Lockwood ◽  
R. Holme ◽  
Y. Kamide ◽  
...  

Abstract. Extending previous studies, a full-circle investigation of the ring current has been made using Cluster 4-spacecraft observations near perigee, at times when the Cluster array had relatively small separations and nearly regular tetrahedral configurations, and when the Dst index was greater than −30 nT (non-storm conditions). These observations result in direct estimations of the near equatorial current density at all magnetic local times (MLT) for the first time and with sufficient accuracy, for the following observations. The results confirm that the ring current flows westward and show that the in situ average measured current density (sampled in the radial range accessed by Cluster ~4–4.5 RE) is asymmetric in MLT, ranging from 9 to 27 nA m−2. The direction of current is shown to be very well ordered for the whole range of MLT. Both of these results are in line with previous studies on partial ring extent. The magnitude of the current density, however, reveals a distinct asymmetry: growing from 10 to 27 nA m−2 as azimuth reduces from about 12:00 MLT to 03:00 and falling from 20 to 10 nA m−2 less steadily as azimuth reduces from 24:00 to 12:00 MLT. This result has not been reported before and we suggest it could reflect a number of effects. Firstly, we argue it is consistent with the operation of region-2 field aligned-currents (FACs), which are expected to flow upward into the ring current around 09:00 MLT and downward out of the ring current around 14:00 MLT. Secondly, we note that it is also consistent with a possible asymmetry in the radial distribution profile of current density (resulting in higher peak at ~4–4.5 RE). We note that part of the enhanced current could reflect an increase in the mean AE activity (during the periods in which Cluster samples those MLT).


2018 ◽  
Vol 24 (S1) ◽  
pp. 1808-1809
Author(s):  
Rohan Dhall ◽  
Matthew Cabral ◽  
Abinash Kumar ◽  
James M. LeBeau

Author(s):  
Zbigniew Pakiela ◽  
Witold Zielinski ◽  
Krzysztof J. Kurzydlowski

2008 ◽  
Vol 07 (02n03) ◽  
pp. 103-112 ◽  
Author(s):  
A. SAKURAI ◽  
S. MARUYAMA ◽  
A. KOMIYA ◽  
K. MIYAZAKI

The Discrete Ordinates Radiation Element Method (DOREM), which is radiative transfer code, is applied for solving phonon transport of nano/microscale materials. The DOREM allows phonon simulation with multi-dimensional complex geometries. The objective of this study is to apply the DOREM to the nano/microstructured materials. It is confirmed that significant changes of the heat transport phenomena with different characteristic length scales and geometries are observed. This study also discusses further variations for understanding of heat transport mechanisms.


Sign in / Sign up

Export Citation Format

Share Document