scholarly journals Single-molecule junction spontaneously restored by DNA zipper

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takanori Harashima ◽  
Shintaro Fujii ◽  
Yuki Jono ◽  
Tsuyoshi Terakawa ◽  
Noriyuki Kurita ◽  
...  

AbstractThe electrical properties of DNA have been extensively investigated within the field of molecular electronics. Previous studies on this topic primarily focused on the transport phenomena in the static structure at thermodynamic equilibria. Consequently, the properties of higher-order structures of DNA and their structural changes associated with the design of single-molecule electronic devices have not been fully studied so far. This stems from the limitation that only extremely short DNA is available for electrical measurements, since the single-molecule conductance decreases sharply with the increase in the molecular length. Here, we report a DNA zipper configuration to form a single-molecule junction. The duplex is accommodated in a nanogap between metal electrodes in a configuration where the duplex is perpendicular to the nanogap axis. Electrical measurements reveal that the single-molecule junction of the 90-mer DNA zipper exhibits high conductance due to the delocalized π system. Moreover, we find an attractive self-restoring capability that the single-molecule junction can be repeatedly formed without full structural breakdown even after electrical failure. The DNA zipping strategy presented here provides a basis for novel designs of single-molecule junctions.

2016 ◽  
Vol 4 (38) ◽  
pp. 8842-8858 ◽  
Author(s):  
Yuki Komoto ◽  
Shintaro Fujii ◽  
Madoka Iwane ◽  
Manabu Kiguchi

A single-molecule junction shows novel functionalities caused by its unique structure of a low-dimensional nano-material with two metal–molecule interfaces.


2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2020 ◽  
Author(s):  
Albert C. Aragonès ◽  
Katrin F. Domke

Abstract Progress in molecular electronics (ME) is largely based on improved understanding of the properties of single molecules (SM) trapped for seconds or longer to enable their detailed characterization. We present a plasmon-supported break-junction (PBJ) platform to significantly increase the lifetime of SM junctions of 1,4-benzendithiol (BDT) without the need for chemical modification of molecule or electrode. Moderate far-field power densities of ca. 11 mW/µm2 lead to a >10-fold increase in minimum lifetime compared to laser-OFF conditions. The nearfield trapping efficiency is twice as large for bridge-site contact compared to hollow-site geometry, which can be attributed to the difference in polarizability. Current measurements and tip-enhanced Raman spectra confirm that native structure and contact geometry of BDT are preserved during the PBJ experiment. By providing a non-invasive pathway to increase short lifetimes of SM junctions, PBJ is a valuable approach for ME, paving the way for improved SM sensing and recognition platforms.


2020 ◽  
Vol 56 (2) ◽  
pp. 309-312 ◽  
Author(s):  
Yusuke Hasegawa ◽  
Takanori Harashima ◽  
Yuki Jono ◽  
Takumi Seki ◽  
Manabu Kiguchi ◽  
...  

Herein, we report on the kinetic investigation for the breakdown of single-molecule junctions.


Nanoscale ◽  
2015 ◽  
Vol 7 (45) ◽  
pp. 18949-18955 ◽  
Author(s):  
Andrea Vezzoli ◽  
Iain Grace ◽  
Carly Brooke ◽  
Kun Wang ◽  
Colin J. Lambert ◽  
...  

Tetracyanoethene complexation boosts the conductance of metal |molecule| metal single molecule junctions involving suitable aromatic donor moieties by about 20-fold.


2018 ◽  
Vol 2 (2) ◽  
pp. 214-218 ◽  
Author(s):  
Y. Komoto ◽  
S. Fujii ◽  
M. Kiguchi

An investigation on a single-molecule junction reveals the intrinsic properties of a π molecule without the effect of intermolecular interaction and also uncovers its unique properties.


2021 ◽  
Vol 6 (1) ◽  
pp. 49-58
Author(s):  
Edmund Leary ◽  
Georg Kastlunger ◽  
Bart Limburg ◽  
Laura Rincón-García ◽  
Juan Hurtado-Gallego ◽  
...  

Controlling the charge state of a molecule wired in a two-terminal single-molecule junction at room temperature is a key challenge in molecular electronics in relation to the development of molecular memory and other computational componentry.


Nanoscale ◽  
2021 ◽  
Author(s):  
Werner M. Schosser ◽  
Chun-Wei Hsu ◽  
Patrick Zwick ◽  
Katawoura Beltako ◽  
Diana Dulic ◽  
...  

The possibility to study quantum interference phenomena at ambient conditions is an appealing feature of molecular electronics. By connecting two porphyrins in a cofacial cyclophane, we create an attractive platform...


2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2012 ◽  
Vol 84 (4) ◽  
pp. 931-943 ◽  
Author(s):  
Yutaka Ie ◽  
Masaru Endou ◽  
Aihong Han ◽  
Ryo Yamada ◽  
Hirokazu Tada ◽  
...  

The synthesis of 3-hexylthiophene-based oligothiophenes with a length of approximately 10 nm bearing anchor units at both terminal positions has been accomplished. In addition, we have designed and synthesized completely encapsulated oligothiophenes to investigate single-molecule conductance. Their properties are evaluated by UV–vis absorption spectra and cyclic voltammetry (CV) measurements. The conductance of a single-molecule junction for thiol-introduced oligothiophenes was measured by 10-nm-scale nanogap gold electrodes or modified scanning tunneling microscope (STM) techniques.


Sign in / Sign up

Export Citation Format

Share Document