scholarly journals Circa-SCOPE: high-throughput live single-cell imaging method for analysis of circadian clock resetting

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gal Manella ◽  
Dan Aizik ◽  
Rona Aviram ◽  
Marina Golik ◽  
Gad Asher

AbstractCircadian clocks are self-sustained and cell-autonomous oscillators. They respond to various extracellular cues depending on the time-of-day and the signal intensity. Phase Transition Curves (PTCs) are instrumental in uncovering the full repertoire of responses to a given signal. However, the current methodologies for reconstructing PTCs are low-throughput, laborious, and resource- and time-consuming. We report here the development of an efficient and high throughput assay, dubbed Circadian Single-Cell Oscillators PTC Extraction (Circa-SCOPE) for generating high-resolution PTCs. This methodology relies on continuous monitoring of single-cell oscillations to reconstruct a full PTC from a single culture, upon a one-time intervention. Using Circa-SCOPE, we characterize the effects of various pharmacological and blood-borne resetting cues, at high temporal resolution and a wide concentration range. Thus, Circa-SCOPE is a powerful tool for comprehensive analysis and screening for circadian clocks’ resetting cues, and can be valuable for basic as well as translational research.

Lab on a Chip ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1743-1756 ◽  
Author(s):  
Andy K. S. Lau ◽  
Ho Cheung Shum ◽  
Kenneth K. Y. Wong ◽  
Kevin K. Tsia

Optical time-stretch imaging is now proven for ultrahigh-throughput optofluidic single-cell imaging, at least 10–100 times faster.


2018 ◽  
Vol 99 (6) ◽  
pp. 1430-1439 ◽  
Author(s):  
Melissa C. Whiteman ◽  
Leah Bogardus ◽  
Danila G. Giacone ◽  
Leonard J. Rubinstein ◽  
Joseph M. Antonello ◽  
...  

2018 ◽  
Author(s):  
Anastasia P. Chumakova ◽  
Masahiro Hitomi ◽  
Erik P. Sulman ◽  
Justin D. Lathia

ABSTRACTCancer stem cells (CSCs) are a heterogeneous and dynamic population that stands at the top of tumor cellular hierarchy and is responsible for maintenance of the tumor microenvironment. As methods of CSC isolation and functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess heterogeneity and state transition dynamics in CSCs. We developed a High-throughput Automated Single Cell Imaging Analysis (HASCIA) approach for quantitative assessment of protein expression with single cell resolution and applied the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSC as a model system. We were able to validate the quantitative nature of this approach through comparison of the protein expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also revealed that CSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level decreased. Functional assessment of stem cell frequency in combination with quantification of SOX2 expression by HASCIA defined a stable cut-off of SOX2 expression level for stem cell state. We also developed an approach to assess local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity and a presence of a sub-population of slowly proliferating SOX2-low CSCs. HASCIA is an open source software that facilitates understanding the dynamics of heterogeneous cell population such as that of CSCs and their progeny. It is a powerful and easy-to-use image analysis and statistical analysis tool available athttps://hascia.lerner.ccf.org.


2009 ◽  
Vol 106 (10) ◽  
pp. 3758-3763 ◽  
Author(s):  
R. J. Taylor ◽  
D. Falconnet ◽  
A. Niemisto ◽  
S. A. Ramsey ◽  
S. Prinz ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
John ME Nichols ◽  
Vlatka Antolović ◽  
Jacob D Reich ◽  
Sophie Brameyer ◽  
Peggy Paschke ◽  
...  

Dedifferentiation is a critical response to tissue damage, yet is not well understood, even at a basic phenomenological level. Developing Dictyostelium cells undergo highly efficient dedifferentiation, completed by most cells within 24 hr. We use this rapid response to investigate the control features of dedifferentiation, combining single cell imaging with high temporal resolution transcriptomics. Gene expression during dedifferentiation was predominantly a simple reversal of developmental changes, with expression changes not following this pattern primarily associated with ribosome biogenesis. Mutation of genes induced early in dedifferentiation did not strongly perturb the reversal of development. This apparent robustness may arise from adaptability of cells: the relative temporal ordering of cell and molecular events was not absolute, suggesting cell programmes reach the same end using different mechanisms. In addition, although cells start from different fates, they rapidly converged on a single expression trajectory. These regulatory features may contribute to dedifferentiation responses during regeneration.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (24) ◽  
pp. 4639-4647 ◽  
Author(s):  
Yuanyuan Han ◽  
Yi Gu ◽  
Alex Ce Zhang ◽  
Yu-Hwa Lo

Imaging flow cytometry combines the single-cell imaging capabilities of microscopy with the high-throughput capabilities of conventional flow cytometry. This article describes recent imaging flow cytometry technologies and their challenges.


Sign in / Sign up

Export Citation Format

Share Document